Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Геология и цикл геологических наук





Геология и цикл геологических наук

Геология– одна из фундаментальных естественных наук, изучающая строение, состав, происхождение и развитие Земли. Она исследует сложные явления и процессы, протекающие на ее поверхности и в недрах. Современная геология опирается на многовековой опыт познания Земли и разнообразные специальные методы исследования. В отличии от других наук о Земле, геология занимается исследованием ее недр. Основные задачи геологии состоят в изучении наружной каменной оболочки планеты – земной коры и взаимодействующих с ней внешних и внутренних оболочек Земли (внешние – атмосфера, гидросфера, биосфера; внутренние – мантия и ядро).

Объектами непосредственного изучения геологии являются минералы, горные породы, ископаемые органические остатки, геологические процессы.

 

Геология тесно связана с другими науками о Земле, например с астрономией, геодезией, географией, биологией. Геология опирается на такие фундаментальные науки как математика, физика, химия. Геология является синтетической наукой, хотя в то же время распадается на множество взаимосвязанных отраслей, научных дисциплин, изучающих Землю в разных аспектах и получающих сведения об отдельных геологических явлениях и процессах. Так, изучением состава литосферы занимаются: петрология, исследующая магматические и метаморфические породы, литология, изучающая осадочные горные породы, минералогия – наука, изучающая минералы как природные химические соединения и геохимия – наука о распределении и миграции химических элементов в недрах земли.

Геологические процессы, формирующие рельеф земной поверхности, изучает динамическая геология, частью которой являются геотектоника, сейсмология и вулканология.

Раздел геологии, занимающийся изучением истории развития земной коры и Земли в целом, включает стратиграфию, палеонтологию, региональную геологию и носит название «Историческая геология.

Есть в геологии науки, имеющие большое практическое значение. Такие, как о месторождениях полезных ископаемых, гидрогеология, инженерная геология, геокриология.

В последние десятилетия появились и приобретают все большее значение науки связанные с исследованием космоса (космическая геология), дна морей и океанов (морская геология).

Наряду с этим есть геологические науки, находящиеся на стыке с другими естественными науками: геофизика, биогеохимия, кристаллохимия, палеоботаника. К таковым относятся также геохимия и палеогеография. Наиболее близкая и разносторонняя связь геологии с географией. Для географических наук, таких как ландшафтоведение, климатология, гидрология, океанография, более всего важны геологические науки, изучающие процессы, влияющие на формирование рельефа земной поверхности и историю образования земной коры всей Земли.



Абсолютный и относительный возраст земли, геохронологическая шкала.

Возраст Земли как планеты по последним данным оценивается ~ 4,6 млрд. лет. Изучение метеоритов и лунных пород также подтверждает эту цифру. Однако самые древние породы Земли, доступные непосредственному изучению, имеют возраст около 3,8 млрд. лет. Поэтому весь более древний этап истории Земли носит название до геологической стадии. Объектом же геологического изучения является история Земли за последние 3,8 млрд. лет, которая выделяется в ее геологическую стадию.

Для выяснения закономерностей и условий образования г.п. необходимо знать последовательность их образования и возраст, т.е. установить их геологическую хронологию.

Различают относительный возраст г.п. (относительная геохронология) иабсолютный возраст г.п. (абсолютная геохронология).

Установлением возраста г.п. занимается наука стратиграфия (лат. Stratum — слой).

Абсолютный возраст горных пород и методы его определения.

Абсолютная геохронология устанавливает возраст г.п. в единицах времени. Определение абсолютного возраста необходимо для корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лищенных палеонтологических остатков фанерозойских и долембрийских пород.

К методам определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и не радиологические методы

Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста г.п., в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала (соотв. И породы).

Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево-аргоновый, рубидиево-стронциевый, радиоуглеродный и др. (выше установленный возраст Земли 4,6 млрд. лет не установлен с применением свинцового метода).

Не радиологические методы уступают по точности ядерным.

Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (~ 97 млн. лет).

Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в з.к. в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.

Биологический метод базируется на представлении о сравнительно равномерном развитии орг. мира. Исходный параметр — продолжительность четвертичного периода 1,7 — 2 млн. лет.

Метод подсчета слоев ленточных глин, накапливающихся на периферии тающих ледников. Глинистые осадки откладываются зимой, а песчаные летом и весной, т.о. каждая пара таких слоев результат годичного накопления осадков (последний ледник на Балтийском море прекратил свое движение 12 тысяч лет назад).

Цвет минерала

Вопрос о природе цветовой окраски минералов очень сложен. Природа окрасок некоторых минералов еще не определена. В лучшем случае цвет минерала определяется спектральным составом отражаемого минералом светового излучения или обуславливается его внутренними свойствами, каким-либо химическим элементом, входящим в состав минерала, тонко рассеянными включениями других минералов, органического вещества и другими причинами. Красящий пигмент иногда бывает, распространен неравномерно, полосами, давая разноцветные рисунки (например, у агатов).

Цвет некоторых прозрачных минералов меняется в связи с отражением падающего на них света от внутренних поверхностей, трещин или включений. Это явления радужной окраски минералов халькопирита, пирита и иризации – голубые, синие переливы лабрадора.

Некоторые минералы многоцветны (полихромные) и имеют разную окраску по длине кристалла (турмалин, аметист, берилл, гипс, флюорит и др.).

Цвет минерала иногда может быть диагностическим признаком. Например, водные соли меди имеют зеленый или синий цвет. Характер цвета минералов определяется визуально обычно путем сравнения наблюдаемого цвета с общеизвестными понятиями: молочно-белый, светло-зеленый, вишнево-красный и т.п. этот признак не всегда характерен для минералов, так как цвета многих из них сильно варьируют.

Цвет черты

Более надежным диагностическим признаком, чем цвет минерала, является цвет его порошка, оставляемого при царапании испытуемым минералом матовой поверхности фарфоровой пластинки. В ряде случаев совпадает с цветом самого минерала, в других он совсем иной. Так, у киновари окраска минерала и порошка красные, а у латунно-желтого пирита черта зеленовато-черная. Черту дают мягкие и средней твердости минералы, а твердые лишь царапают пластинку и оставляют на ней борозды.

Прозрачность

По своей способности пропускать свет минералы делятся на несколько групп:

  • прозрачные (горный хрусталь, каменная соль) – пропускающие свет, через них ясно видны предметы;
  • полупрозрачные (халцедон, опал) – предметы, через них плохо видны предметы;
  • просвечивающие только в очень тонких пластинках;
  • непрозрачные – свет не пропускают даже в тонких пластинках (пирит, магнетит).

Блеск

Блеском называется способность минерала отражать свет. Строгого научного определения понятия блеск не существует. Различают минералы с металлическим блеском как у полированных минералов (пирит, галенит); с полуметаллическим (алмазным, стеклянным, матовым, жирным, восковым, перламутровым, с радужными переливами, шелковистым). Многие физические свойства являются важными диагностическими признаками при определении минералов.

Спайность

Явление спайности у минералов определяется сцеплением частиц внутри кристаллов и обусловлено свойствами их кристаллических решеток. Раскол минералов происходит легче всего параллельно наиболее плотным сеткам кристаллических решеток. Эти сетки наиболее часто и в наилучшем развитии проявляются и во внешнем ограничении кристалла.

Количество плоскостей спайности у разных минералов неодинаково, достигает шести, причем степень совершенства разных плоскостей может быть неодинаковой. Различают следующие виды спайности:

  • весьма совершенную, когда минерал без особого усилия расщепляется на отдельные листочки или пластинки, обладающие гладкими блестящими поверхностями – плоскостями спайности (гипс).
  • совершенную, обнаруживаемую при легком ударе по минералу, который рассыпается на кусочки, ограниченные только ровными блестящими плоскостями. Неровные поверхности не по плоскости спайности получаются очень редко (кальцит раскалывается на правильные ромбоэдры разной величины, каменная соль – на кубики, сфалерит – на ромбические додекаэдры).
  • среднюю, которая выражается в том, что при ударе по минералу образуются изломы как по плоскостям спайности, так и по неровным поверхностям (полевые шпаты – ортоклаз, микроклин, лабрадор)
  • несовершенную. Плоскости спайности в минерале обнаруживаются с трудом (апатит, оливин).
  • весьма несовершенную. Плоскости спайности в минерале отсутствуют (кварц, пирит, магнетит). В то же время иногда кварц (горный хрусталь) встречается в хорошо ограненных кристаллах. Поэтому следует отличать естественные грани кристалла от плоскостей спайности, выявляющихся при изломе минерала. Плоскости могут быть параллельны граням и отличаться более «свежим» видом и более сильным блеском.

Излом

Характер поверхности, образующейся при разломе (расколе) минерала различный:

1. Ровный излом, если раскол минерала происходит по плоскостям спайности, как, например, у кристаллов слюды, гипса, кальцита.

2. Ступенчатый излом получается при наличии в минерале пересекающихся плоскостей спайности; он может наблюдаться у полевых шпатов, кальцита.

3. Неровный излом характеризуется отсутствием блестящих участков раскола по спайности, как, например, у кварца.

4. Зернистый излом наблюдается у минералов с зернисто-кристаллическим строением (магнетит,хромит).

5. Землистый излом характерен для мягких и сильно пористых минералов (лимонит, боксит).

6. Раковистый – с выпуклыми и вогнутыми участками как у раковин (апатит, опал).

7. Занозистый (игольчатый) – неровная поверхность с ориентированными в одном направлении занозами (селенит, хризотил-асбест, роговая обманка).

8. Крючковатый – на поверхности раскола возникают крючковатые неровности (самородная медь, золото, серебро). Этот вид излома характерен для ковких металлов.

Твердость

Твердость минералов – это степень сопротивляемости их наружной поверхности проникновению другого, более твердого минерала и зависит от типа кристаллической решетки и прочности связей атомов (ионов). Определяют твердость царапанием поверхности минерала ногтем, ножом, стеклом или минералами с известной твердостью из шкалы Мооса, в которую входят 10 минералов с постепенно возрастающей твердостью (в относительных единицах).

Относительность положения минералов по степени возрастания их твердости видна при сравнении: точные определения твердости алмаза (твердость по шкале равна 10) показали, что она более чем в 4000 раз выше, чем у талька (твердость – 1).

Шкала Мооса

Минерал Твердость
Тальк
Гипс
Кальцит
Флюорит
Апатит
Полевой шпат
Кварц
Топаз
Корунд
Алмаз

Главная масса минералов имеет твердость от 2 до 6. Более твердые минералы – это безводные окислы и некоторые силикаты. При определении минерала в породе необходимо убедиться, что испытывается именно минерал, а не порода.

Удельный вес

Удельный вес изменяется от 0,9 до 23 г/см3. У большей части минералов он составляет 2 – 3,4 г/см3, рудные минералы и самородные металлы имеют наивысший удельный вес 5,5 – 23 г/см3. Точный удельный вес определяется в лабораторных условиях, а в обычной практике – «взвешиванием» образца на руке:

— легкие (с удельным весом до 2,5 г/см3) – сера, каменная соль, гипс и другие минералы;

— средние (2,6 – 4 г/см3) – кальцит, кварц, флюорит, топаз, бурый железняк и другие минералы;

— с большим удельным весом (больше 4). Это барит (тяжелый шпат) – с удельным весом 4,3 – 4,7, сернистые руды свинца и меди – удельный вес 4,1 – 7,6 г/см3, самородные элементы – золото, платина, медь, железо и т.д. с удельным весом от 7 до 23 г/см3 (осмистый иридий – 22,7 г/см3, платиновый иридий – 23 г/см3).

Магнитность

Свойство минералов притягиваться магнитом или отклонять магнитную стрелку компаса является одним из диагностических признаков. Сильно магнитными минералами являются магнетит и пирротин.

Ковкость и хрупкость

Ковкими являются минералы, изменяющие свою форму при ударе молотком, но не рассыпающиеся (медь, золото, платина, серебро). Хрупкие – рассыпаются при ударе на мелкие кусочки.

Электропроводность

Электропроводность минералов – это способность минералов проводить электрический ток под действием электрического поля. В противном случае минералы относятся к диэлектрикам, т.е. не проводящим ток.

Горючесть и запах

Некоторые минералы загораются от спички и создают характерные запахи (сера – сернистого газа, янтарь – ароматический запах, озокерит – удушливый запах угарного газа). Запах сероводорода появляется при ударе по марказиту, пириту, при растирании кварца, флюорита, кальцита. При трении кусочков фосфорита друг о друга появляется запах жженой кости. Каолинит при смачивании приобретает запах печки.

Вкус

Вкусовые ощущения вызывают только хорошо растворимые в воде минералы (галит – соленый вкус, сильвин – горько соленый).

Шероховатость и жирность

Жирными, слегка мажущими являются тальк, каолинит, шероховатыми – боксит, мел.

Гигроскопичность

Это свойство минералов увлажняться, притягивая молекулы воды из окружающей среды, в том числе из воздуха (карналлит).

Некоторые минералы реагируют с кислотами. Для опознавания минералов, которые по химическому составу являются солями угольной кислоты, удобно пользоваться реакцией вскипания их со слабой (5 – 10%) соляной кислотой.

Факторы метаморфизма.

Изменение магматических и осадочных пород в твердом состоянии под воздействием эндогенных факторов и называется метаморфизмом.

Решающее влияние на метаморфизм горных пород оказывают давление, температура и флюиды.

 

Температура. Источниками тепла в земной коре являются распад радиоактивных элементов; магматические расплавы, которые, остывая, отдают тепло окружающим горным породам; нагретые глубинные флюиды; тектонические процессы и ряд других факторов. Геотермический градиент, т.е. количество градусов на 1 км глубины, меняется от места к месту на земном шаре и разница может составлять почти 100o С. В пределах устойчивых, жестких блоков земной коры, например на щитах древних платформ, геотермический градиент не превышает 6-10o С, в то время как в молодых растущих горных сооружениях может достигать почти 100o С. Температура резко ускоряет протекание химических реакций, способствует перекристаллизации вещества, сильно влияет на процессы минералообразования. Возрастание температуры приводит к обезвоживанию (дегидратации) минералов, формированию более высокотемпературных минеральных ассоциаций, лишенных воды, декарбонатизации известняков и т. д. Обычно метаморфические преобразования начинаются при Т выше 300o С, а прекращаются, когда Т достигает точки плавления развитых в данном месте горных пород.

 

Давление подразделяется на всестороннее (литостатическое), обусловленное массой вышележащих горных пород, и стрессовое, или одностороннее, связанное с тектоническими направленными движениями. Всестороннее литостатическое давление связано не только с глубиной, но также и с плотностью пород, и на глубине 10 км может превышать 200 мПа, а на глубине 30 км - 600-700 мПа. При геотермическом градиенте в 25 град/км плавление горных пород может начаться на глубине около 20 км. При высоких давлениях породы переходят в пластичное состояние- Одностороннее стрессовое давление лучше всего проявляется в верхней части земной коры складчатых зон и выражается в образовании определенных структурно-текстурных особенностей породы и специфических стресс-минералов, таких, как глаукофан, дистен и др. Стрессовое давление вызывает механические деформации горных пород, их дробление, рассланцевание, увеличение растворимости минералов в направлении давления. В подобные милонитизированные зоны проникают флюиды, под воздействием которых породы испытывают перекристаллизацию.

 

Флюиды, к которым относятся H2O, CO2, CO, CH4, H2, H2S, SO2 и другие переносят тепло, растворяют минералы горных пород, переносят химические элементы, активно участвуют в химических реакциях и играют роль катализаторов. Значение флюидов иллюстрируется тем, что в <сухих системах>, т. с. лишенных флюидов, даже при наличии высоких давлений и температур метаморфические изменения почти не происходят.

Осадочные горные породы.

Осадочные горные породы образовались на поверхности литосферы в результате накопления минеральных масс, полученных в процессе разрушения магматических, метаморфических и осадочных горных пород. Процессы разрушения горных пород литосферы и накопления новых пород на поверхности земли идут повсеместно: в пустынях, где энергичную работу ведет ветер; вдоль морских и океанических берегов, где волны перемещают обломочный материал; на дне глубоких частей морей и океанов, где отмирающие организмы дают начало толщам осадочных пород. Условия образования накладывают существенный отпечаток на облик осадочных пород. В одних случаях они состоят из обломков ранее разрушенных горных пород, в других - из скопления органических остатков, в третьих - из кристаллических зерен, выпавших из раствора.

Осадочные породы в зависимости от происхождения резко отличаются друг от друга. Поэтому их принято подразделять на три группы:

Обломочное происхождение

Химическое происхождение

Органогенное происхождение

Осадочные породы представляют особый интерес для строителей, так как они служат основаниями и средой для различных сооружений и повсеместно доступны в качестве строительных материалов. Они имеют вторичное происхождение, поскольку исходным материалом для их формирования являются продукты разрушения ранее существовавших пород. Процесс образования осадочных пород протекает по схеме: физическое и химическое выветривание пород, механический и химический перенос, отложение и накопление продуктов их разрушения и, наконец, уплотнение и цементация рыхлого осадка с превращением его в породу. Общими свойствами осадочных пород являются одинаковые формы залегания в виде пластов, с которыми связаны их характерные текстурные признаки - слоистость и пористость. Последняя особенно важна, так как оказывает большое влияние на физико-механические свойства пород: прочность, плотность и среднюю плотность, водопоглощение, морозостойкость, механическую обработку и др.

Осадочные породы отличаются многообразием структур с широким варьированием формы, размеров частиц и их соотношения у различных представителей. Для них характерно значительное разнообразие минеральных компонентов, более простых по химическому составу и являющихся преимущественно осадочными новообразованиями, совпадающими по составу с некоторыми магматическими минералами. Среди породообразующих минералов встречаются осажденные из водных растворов карбонаты, сульфаты, водный кремнезем; вторичные (глинистые) продукты выветривания материнских пород - каолинит, монтмориллонит; слюдистые минералы, гидроксиды А1 и Fe; реликтовые минералы, сохранившиеся без изменения, - магматический кварц, полевые шпаты, а также обломки пород различного генезиса и остатки организмов. Некоторые представители осадочных пород растворяются в воде, например каменная соль, гипс, известняки.

 

Классификация грунтов.

Классификация грунтов включает следующие таксономические единицы, выделяемые по группам признаков:

 

— класс — по общему характеру структурных связей;

 

— группа — по характеру структурных связей (с учетом их прочности);

 

— подгруппа — по происхождению и условиям образования;

 

— тип — по вещественному составу;

 

— вид — по наименованию грунтов (с учетом размеров частиц и показателей свойств);

 

— разновидности — по количественным показателям вещественного состава, свойств и структуры грунтов.

 

Класс природных скальных грунтов — грунты с жесткими структурными связями (кристаллизационными и цементационными) подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 1.

 

Класс природных дисперсных грунтов — грунты с водноколлоидными и механическими структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности

 

Класс природных мерзлых грунтов* — грунты с криогенными структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности

 

Класс техногенных (скальных, дисперсных и мерзлых) грунтов — грунты с различными структурными связями, образованными в результате деятельности человека, подразделяют на группы, подгруппы, типы и виды

 

Частные классификации по вещественному составу, свойствам и структуре скальных, дисперсных и мерзлых грунтов (разновидности) представлены в приложении Б.

 

По своему происхождению горные породы они подразделяются на:

 

- магматические, изверженные, образовавшиеся в результате застывания магмы; они имеют кристаллическую структуру и классифицируются как скальные грунты;

 

- осадочные; они образовались в результате разрушения и выветривания горных пород с помощью воды и воздуха и образуют скальные и нескальные грунты;

 

- метаморфические, которые образовались в результате действия на метаморфические и осадочные породы высоких температур и больших давлений; они классифицируются как скальные грунты.

Верховода, характеристика.

Верховодкой называют временные скопления подземных вод в зоне аэрации. Эта зона располагается на небольшой глубине от поверхности, над горизонтом грунтовых вод, где часть пор пород занята связанной водой, другая часть – воздухом.

Верховодка образуется над случайными водоупорами (или полуводоупорами), в роли, которых могут быть линзы глин и суглинков в песке, прослойки более плотных пород. При инфильтрации вода временно задерживается и образует своеобразный водоносный горизонт. Чаще всего это бывает связанно с периодом обильного снеготаяния, периодом дождей. В остальное время вода верховодки испаряется и просачивается в нижележащие грунтовые воды.

Другой особенностью верховодки является вохможность ее образования даже при отсутствии в зоне аэрации каких-либо водоупорных пропластков. Например, в толщу суглинков обильно поступает вода, но вследствие низкой водопроницаемости просачивание происходит замедленно и в верхней части толщи образуется верховодка. Через некоторое время эта вода рассасывается.

В целом для верховодки характерно: временный, чаще сезонный характер, небольшая площадь распространения, малая мощность и безнапорность. В легко водопроницаемых породах, например в песках, верховодка возникает сравнительно редко. Для нее наиболее типичны различные суглинки и лессовые породы.

Верховодка представляет значительную опасность для строительства. Залегая в пределах подземных частей зданий и сооружений (подвалы котельные) она может вызвать их подтопление, если заранее не были предусмотрены меры дренирования или гидроизоляции. В последнее время в результате значительных утечек воды (водопровод, бассейны) отмечено появление горизонтов верховодок на территории промышленных объектов и новых жилых районов, расположенных в зоне расположения лессовых пород. Это представляет серьезную опасность, так как грунты оснований снижают свою устойчивость, затрудняется эксплуатация зданий и сооружений.

При инженерно-геологических изысканиях, проводимых в сухое время года, верховодка не всегда обнаруживается. Поэтому ее появление для строителей может быть неожиданным.

Воды зоны аэрации.

Как правило, зона аэрации имеет слои грунта различные по своей водопроницаемости. Поэтому, во время выпадения дождей, в зоне аэрации может образовываться временный водоносный горизонт, который называется верховодкой. Верховодка особенно характерна при зимней оттепели и весной, когда в грунте ещё сохраняется водонепроницаемый слой сезонной мерзлоты, а тающий на поверхности снег обеспечивает интенсивное насыщение почвы водой. Весенняя верховодка часто является причиной затопления подвалов зданий.

 

Наличие влаги в зоне аэрации объясняется тем, что все капиллярно-пористые системы, в частности которой и является зона аэрации сложенная песками обладает способностью всасывать влагу из воздуха, удерживать и накапливать ее в своих порах. После чего накопленная влага может "стекать" из зоны аэрации в водоносный горизонт, пополняя его запасы. Эта способность возрастает с уменьшением влажности грунта, понижением его температуры и увеличением содержания в нем солей. Благодаря процессам внутригрунтовой конденсации водяных паров даже в пустынях, где влажность воздуха минимальна, под барханами образуются линзы пресной воды.

 

Зона аэрации расположена между поверхностью земли и уровнем грунтовых вод. Зона насыщения горных пород расположена ниже уровня грунтовых вод. Подземные воды в зоне насыщения циркулируют в виде верховодк, грунтовых, артизеанских, трещинных и вод вечной мерзлоты. Верховодки- это временные скопления подземных вод в зоне аэрации. Верховодки образуются над случайными водоупорами- линзы глин и суглинков, при инфильтрации вода задерживается и образует водоносные горизонты. Это связанно с периодом обильного снеготаяния, периодом дождей. Также это появляется вследствие низкой водопронинцаемости грунта.

 

Для обеспечения зоны аэрации, для дыхания корней, правильного разложения органического вещества в почве должен происходить газообмен, при котором весь объем воздух в корнеобитаемом слое будет обновляться не больше, чем за 8 суток. Для нормального роста и развития растений в почве одновременно должны содержаться в определенном соотношении воздух и вода. При недостатке воды корни растений не могут подать требуемое количество ее к листьям (почвенная засуха). В сухой почве много воздуха, вследвие чего активизируется деятельность аэробных бактерий, а это приводит к быстрому разложение органического вещества. При малом содержании воды в почве повышается концентрация почвенного раствора и растения не могут использовать его. При избытке воды, содержание воздуха уменьшается и ухудшается дыхание корней, замедляются процессы разложения органического вещества.

 

Таким образом, от количества воды в почве зависит степень обеспечения ею растений, содержания в почве воздуха, тепловой и питательный режим в почве, т.е. ее плодородие. Оптимальная влажность почвы для разных растений различна (табл.). чем в почве больше питательных веществ, тем выше оптимум влажности.

Плывуны и псевдоплывуны.

ПЛЫВУН (а. drift sand, floating sand, running sand, quicksand; н. Schwimmsand; ф. terrain соulant, sable aquifere; и. arena movediza, roca pastosa, fluidez de suelo) — насыщенные водой рыхлые слаболитифицированные, главным образом песчаные породы, способные растекаться и оплывать.

 

Различают истинный и ложный плывун. Истинный плывун состоит из тонкозернистых и пылеватых песков, а также грунтов, содержащих гидрофильные коллоиды, выполняющие роль смазки. Характерная особенность этих плывунов — большая подвижность и способность быстро переходить в плывунное состояние при незначительном механическом воздействии, особенно при сотрясении или вибрации. При малой влажности и высокой плотности плывун обладает значительной прочностью. При влажности выше некоторой критической плывуны могут течь как единое целое под действием незначительных напряжений. Истинный плывун при промерзании подвергается сильному пучению, слабо фильтрует воду, высыхая, приобретает связность. В отличие от высокодисперсных пластичных грунтов пластические свойства истинных плывунов являются временными и после снятия нагрузки постепенно исчезают. Ложные плывуны не содержат коллоидных частиц, и их плывунные свойства проявляются при значительных напорных градиентах. По мере увеличения плотности ложные плывуны часто теряют плывунные свойства.

 

Плывуны осложняют ведение горных работ при проходке горных выработок, строительстве котлованов, сооружений, тоннелей и др. В качестве защитных мероприятий при проходке в плывунах применяют специальные щиты, кессоны, опускные колодцы, замораживание, опережающую проходку и закрепление плывунов.

Виды воды в горных породах.

В зависимости от физического состояния, подвижности и характера связи с грунтом выделяют несколько видов воды в грунтах: химически и физически связанная, капиллярная, свободная, вода в твердом и парообразном состоянии.

 

Химически связанная вода входит в состав некоторых минералов, например гипса, медного купороса. Вода из таких минералов может быть удалена в большинстве случаев лишь при нагревании до 300-400 С.

 

Физически связанная вода удерживается на поверхности минералов и частиц грунта молекулярными силами и может быть удалена из грунта только при температуре не менее 90-120 С. Этот вид воды подразделяют на гигроскопическую и пленочную.

 

Гигроскопическая вода образуется вследствие адсорбции частицами грунта молекул воды. На поверхности частиц гигроскопическая вода удерживается молекулярными и электрическими силами.

 

Пленочная вода образует пленку поверх гигроскопической воды, когда влажность грунта становится выше его максимальной гигроскопичности. Эта вода может передвигаться от одной частицы грунта к другой.

 

Капиллярная вода образуется в порах грунта после насыщения их пленочной водой, заполняет поры и тонкие трещины и перемещается в них под действием капиллярных сил Капиллярную воду в порах грунта подразделяют на капиллярно-подвешенную, образующуюся в верхней части почвенного слоя, питающуюся атмосферными осадками и не связанную с нижерасположенными грунтовыми водами; капиллярно-поднятую, располагающуюся в виде капиллярной зоны над уровнем грунтовых вод и тесно с ним связанную; капиллярно-разобщенную, находящуюся в остальной толще грунта. Капиллярная вода через поверхность почвы или листья растений испаряется, играет важную роль в насыщении почв водами, режиме грунтовых вод и питании растений.

 

Свободная вода – наиболее подвижный и важный компонент подземных вод. Эта вода в жидком виде находится в порах и трещинах грунта и перемещается под влиянием силы тяжести и градиентов гидростатического давления.

 

Вода в твердом состоянии находится в грунте в виде кристаллов, прослоек и линз льда.

 

Вода в парообразном состоянии заполняет вместе с воздухом не занятые водой пустоты в грунтах.

Полевые испытания грунтов.

Полевые методы исследования грунтов используются при выполнении инженерно-геологических изысканий, для оценки прочностных и деформационных свойств грунтов, для получения гидрогеологических параметров, в условиях естественного залегания пород. Исследования проводятся на площадке (трассе) проектируемых или реконструируемых инженерных сооружений. Проведение работ требует наличия специальной техники и оборудования. Полевые методы исследования грунтов имеют различное предназначение и решают разнообразные задачи:

 

исследование физических, прочностных и деформационных свойств грунтов в условиях их естественного залегания;

получения информации о условиях залегания подземных вод, слоев пород, их генезисе;

получение гидрогеологических параметров и характеристик массива грунтов.

методами полевых исследований грунтов:

 

статическое зондирование;

испытание штампом;

испытание прессиометром;

испытание на срез целика грунтов;

опытно-фильтрационные работы.

Статическое зондирование относится к специальным методам получения инженерно-геологической информации. Современные возможности существенно расширили спектр информации, которую можно получить при применении этого полевого метода исследования грунтов. Значительно увеличилась глубина проведения испытания до 45 м (в зависимости от литологического состава массива).

 

Статическое зондирование, как метод полевых исследований грунтов, обладает широкими технологическими возможностями для выполнения пробоотбора образцов пород и подземных вод, а также специальных исследований грунтов в условиях естественного залегания.

 

Материалы, полученные при статическом зондировании, могут использоваться для решения следующих основных задач:

 

расчленение геологического разреза на отдельные слои (инженерно-геологические элементы), идентификация их по площади и по глубине;

типизация и классифицирование грунтов по составу, состоянию и свойствам;

исследование пространственной изменчивости свойств грунтов для выбора наиболее обоснованных расчётных моделей оснований;

определение показателей физико-механических свойств грунтов на основе как эмпирических интерпретационных формул, так и аналитических решений;

решение задач проектирования и расчёта оснований (например, определение расчётной нагрузки на сваю, расчётного сопротивления грунта, осадок сваи и свайного основания).









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.