Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Потери в дальней зоне и многолучевое распространение





В дальней зоне антенн излученные электромагнитные волны распространяются в окружающей среде. Напряженность поля убывает пропорционально 1/ r, что, собственно, обуславливает большую дальность взаимодействия. Следствием свободного распространения и слабого спадания интенсивности является повышенная чувствительность систем RFID в дальней зоне к отражениям, рассеянию или дифракции собственного излучения или излучения других источников.

Потери в дальней зоне можно характеризовать крупномасштабными или мелкомасштабными неоднородностями. Крупномасштабные неоднородности проявляются в виде изменения напряженности поля на больших расстояниях. Мелкомасштабные неоднородности обычно проявляются в виде многолучевого распространения, когда волны, распространяющиеся от источника к приемнику различными путями, могут интерферировать и вызывать большие изменения интенсивности поля в точке приема. Мелкомасштабные неоднородности характеризуются быстрыми флуктуациями на небольших расстояниях. Потери, обусловленные как мелкомасштабными, так и крупномасштабными неоднородностями, описываются соответствующими моделями.

Модели крупномасштабных потерь описывают затухание мощности сигнала с расстоянием от передатчика. Они модифицируют обычный закон обратного квадрата в уравнении для свободного пространства и описывают затухание, обусловленное атмосферой и взаимодействием с материалами. Полагая затухание равным

PL (R) = (λ/4пR) n,

где n равно 2 для свободного пространства, уравнение передачи преобразуется к виду:

Pr = p Pt Gt Gr PL (R).

Обычно используемая модель для оценки потерь распространения в пространстве внутри помещений задается логарифмической моделью:

PL(R) [дБ] = PL(Rσ) + 10 n log (R/R0) + Xσ

где n зависит от свойств помещений, а Xσ - нормально распределенная переменная со стандартным отклонением σ, определенным в децибелах. Величина R0 является фиксированным расстоянием, на котором проводятся измерения, и обычно выбирается равным 1 метру в условиях распространения поля внутри помещений. Таблица 2.1 показывает значения n и σ в различных условиях распространения поля и на различных частотах. Меньшие значения а соответствуют более точной модели.

Таблица 2.1. Параметры n и а логарифмической модели потерь распространения в пространстве внутри помещений.
Здания Частота, (МГц) n σ
Розничный магазин   2,2 8,7
Бакалейный магазин   1,8 5,2
Плотный офис   3,0 7,0
Неплотный офис   2,4 9,6
Неплотный офис   2,6 14,1
Текстильные, химические предприятия   2,0 3,0
Текстильные, химические предприятия   2,1 7,0 - 9,7
Книжный магазин, булочная   1,8 6,0
Металлообрабатывающие предприятия   1,6 - 3,3 5,8 - 6,8
Стены жилых помещений   3,0 7,0

 

 

Явления многолучевого распространения описывают маломасштабные фединговые модели. Многолучевое распространение на небольших расстояниях может вызывать сильные флуктуации и амплитуды и фазы, случайные частотные модуляции и временную дисперсию, обусловленную задержками. В пространстве, содержащем металлические предметы и отражающие объекты, может иметь место многолучевое распространение и интерференция сигналов.

Для описания многолучевого распространения используются различные статистические модели, а общей мерой является среднеквадратическое отклонение (СКО) задержки распространения. Здания с небольшим числом металлических фрагментов и плотной планировкой обычно имеют небольшое СКО задержки распространения в пределах от 30 до 60 нс. Большие здания с большим числом металлических фрагментов и открытыми боковыми пристройками могут иметь задержки распространения, достигающие 400 нс. Технологиями, которые позволяют минимизировать эффект многолучевого распространения, являются эквалайзинг, многоканальность и канальное кодирование. В случае RFID в считывателях используется эквалайзинг и антенная многоканальность. В метках из-за жестких ограничений размеров, сложности и стоимости такие способы не используются.

Влияние соседних антенн

Когда множество меток находится на близком расстоянии друг от друга, связь между их антеннами может оказывать вредное влияние на прием и передачу сигналов.

В ближней зоне близко расположенные метки могут вызывать расстройку соседних антенн. Особенно чувствительными являются метки с высокой добротностью. Один из способов решения этой проблемы в системах ближнего поля состоит в том, что антенны меток, которые предполагается эксплуатировать близко друг к другу, следует настраивать на более высокую частоту.

В системах RFID дальней зоны диаграммы направленности антенн меток также могут существенно искажаться при их близком взаимном расположении и, соответственно, эффективность передачи мощности и сигналов будет снижаться.

Температура и влажность

Изменения температуры окружающей среды вызывают изменения параметров согласующих цепей и, следовательно, могут приводить к неэффективной передачи мощности. При этом системы с высокой добротностью из-за сдвига резонансной частоты могут подвергаться серьезной расстройке. Поэтому максимально по возможности должны применяться компоненты с низким температурным коэффициентом.

Влажность также может приводить к деградации характеристик. В общем случае эти эффекты наиболее вредны на высоких частотах.

 

3 Принципы радиосвязи

Связь между считывателем и меткой является неотъемлемой частью технологии RFID. Ранее были рассмотрены основы электродинамики, при помощи которых реализуется связь. Теперь мы рассмотрим собственно принципы связи.

После краткого рассмотрения методов анализа систем связи мы рассмотрим способы кодирования и модуляции, используемые в процессе связи в системе RFID. Завершим эту главу рассмотрением проблем надежности передачи данных, включая вероятность битовых ошибок (BER) и методы обнаружения ошибок.

При передаче информации нас, как правило, будут интересовать три основных параметра: полоса пропускания, вероятность ошибки, а также сложность и издержки обнаружения ошибок. На протяжении всей этой главы мы будем акцентировать внимание на этих трех параметрах.

3.1. Процесс связи

Процесс связи состоит из передачи и приема информации. Для передачи по каналу связи с помехами информация преобразовывается, накладывается на несущий сигнал и передается. После приема сигнала с помехами, смесь демодулируется и обрабатывается для выделения первоначальной информации.

В технологии RFID информация включает команды управления и данные в двоичном виде. Обычно команды выделяются отдельными строками двоичных данных, но в некоторых случаях они представляют собой некоторую уникальную сигнатуру модуляции. В таких случаях необходима определенная обработка сигнала. Что касается данных, для них оказывается удобным использовать кодирующие устройства.

После того как данные закодированы, они налагаются на несущий сигнал. Такой процесс называется модуляцией. Модуляция необходима как для передачи данных при помощи канала распространения сигнала, так и для согласования спектра частот с административными регламентными ограничениями.

3.2. Модуляция

Передача информации на несущей частоте fc при помощи изменений амплитуды, частоты или фазы, или всех параметров одновременно, называется модуляцией. В системах RFID информация передается по беспроводному каналу. Существует множество аналоговых и цифровых методов модуляции, новсе они разными способами изменяют амплитуду, частоту или фазу несущего колебания. Далее мы будем рассматривать только двоичную цифровую модуляцию, называемую манипуляцией.

Существует три основных метода манипуляции:

- амплитудная манипуляция (ASK),

- двоичная фазовая манипуляция (BPSK),

- частотная манипуляция (FSK).

Во всех трех методах амплитуда, фаза или частота изменяется в соответствии с информацией, которую несет униполярный двоичный сигнал, представляющий цифровые данные в соответствии с выбранным способом кодирования. При амплитудной манипуляции несущий сигнал модулируется двумя амплитудами. При двоичной фазовой манипуляции (BPSK) несущий сигнал может иметь фазу 0 и 180 градусов. При частотной манипуляции (FSK) сигнал может иметь две несущих частоты.

Считыватель должен генерировать такой сигнал, который доминировал бы над шумом и был способен обеспечить функционирование метки. Поскольку метка резко ограничена стоимостью и размерами (она содержит простейший приемник), сигнал, модулируемый считывателем, должен быть простым. Поэтому при передаче сигнала от считывателя к метке используется модуляция ASK, так как она предполагает относительно простое обнаружение. Обнаружение может быть когерентным, когда учитывается фаза несущего сигнала, или некогерентным, когда фаза сигнала не учитывается. Некогерентное обнаружение реализуется проще и дешевле. Детектирование огибающей - разновидность некогерентного обнаружения, когда детектируется огибающая амплитуды модулированного сигнала.

Технические характеристики метки существенно отличаются от характеристик считывателя. Поскольку пассивная метка не имеет передатчика, она передает свою информацию при помощи вариации нагрузки и модуляции обратного рассеяния. Эти методы модуляции позволяют изменять амплитуду и фазу в зависимости от их реализации. Ввиду того, что по сравнению с сигналом считывателя мощность модулируемого меткой сигнала мала, часто для выделения этого сигнала применяют перенос спектра в сторону от центральной частоты при помощи поднесущей частоты. Модуляция нагрузки и обратного рассеяния с использованием поднесущей позволяют осуществить способы модуляции FSK и BPSK. Из-за особенностей и существенных различий в линиях связи от считывателя к метке и от метки к считывателю рассмотрим эти линии раздельно.

3.2.1. Кодирование и модуляция в прямой линии

В линии связи от считывателя к метке (ее часто называют прямой линией связи) должны быть выполнены следующие условия:

- метка должна получать достаточную для чипа энергию,

- метка должна обнаруживать сигнал,

- сигнал метки должен удовлетворять ограничениям по напряженности поля и полосе пропускания.

Первое условие очевидно. В пассивной системе RFID метка должна получать от считывателя необходимую энергию, так как если схемы кодирования и модуляции не будут иметь достаточного энергопитания, то метка не сможет функционировать.

Большое значение имеет обнаружение сигнала. Приемник метки должен быть максимально простым и, поэтому, он имеет невысокую чувствительность. Сложные приемники более чувствительны, но имеют более высокую стоимость. Кроме того, метка должна обеспечивать синхронизацию сигнала. Наконец, вероятность передачи ошибки должна быть минимизирована. Если достоверность данных не высока, связь в системе не будет обеспечена вне зависимости от оптимизации скорости передачи данных. Для удовлетворения регламентным ограничениям кроме схем кодирования и модуляции должны присутствовать схемы формирования и фильтрации сигнала, которые также предстоит рассмотреть.

В системах RFID низкой стоимости наиболее часто применяют амплитудную манипуляцию, а в метках применяют самые простые и дешевые приемники.

3.2.2. Кодирование и модуляция в обратной линии

Условия и требования к линии связи от метки к считывателю (ее часто называют обратной линией связи) отличаются от условий и требований к прямой линии связи. Связь от метки к считывателю осуществляется при помощи вариации нагрузки и обратного рассеяния. В зависимости от варианта реализации связи модулируется и амплитуда, и фаза сигнала метки, или только амплитуда. При этом схемы кодирования и модуляции в метке должны иметь минимальное энергопотребление и ширину спектра сигнала. Так как уровни ответного сигнала метки невелики, они регламентируются не так строго, как сигналы большого уровня мощности считывателя. Однако следствием малого уровня сигнала является сложность его приема считывателем. Чаще всего излучаемый сигнал, который поступает на вход приемника считывателя, значительно превосходит сигнал, приходящий с метки, поэтому его обнаружение связано со значительными трудностями. Как правило эту проблему решают сдвигом сигнала на поднесущую частоту. В случае применения BPSK или FSK модуляции поднесущая легко реализуется посредством АМ и ФМ, которые используются при модуляции нагрузки и обратного рассеяния.

Теперь кратко рассмотрим аспекты использования поднесущих, а затем обсудим вопросы кодирования линии связи от метки к считывателю.

Метод поднесущей частоты

Метод поднесущей частоты реализуется при помощи модуляции нагрузки или модуляции обратного рассеяния на более высоких частотах, чем скорость передачи данных. Изменение фазы или частоты при модуляции поднесущей осуществляется соответственно BPSK или FSK. Некоторые системы RFID, которые, например, работают на частоте 13,56 МГц, используют частоту поднесущей 212 кГц. При этом благодаря модуляции в метке, боковые полосы сигнала располагаются на 212 кГц выше и ниже несущей частоты 13,56 МГц. Перенос сигнала на поднесущие частоты приводит к разнесению боковых полос сигнала метки и сигнала считывателя, что обеспечивает снижение уровня шумов и, соответственно повышает чувствительность приемника считывателя. Такое решение, однако, приводит к повышению рабочей частоты схемы синхронизации или генератора в метке и, следовательно, к увеличению ее энергопотребления.

Кодирование

Кодирование в обратной линии связи (от метки к считывателю) отличается от кодирования прямой линии связи (от считывателя к метке) тем, что энергия сигнала должна быть минимизирована. Уменьшение энергии отраженного сигнала позволяет обеспечить большее количество энергии, доступной для питания электронной схемы метки. Амплитуда сигнала, однако, должна быть достаточной для того, чтобы считыватель смог обнаружить сигнал. Обычно используются коды Манчестера, FM0 или другие. Сложность использования кода Манчестера состоит в том, что вариация фазы сигнала может приводить к ошибке в приеме информации считывателем из-за неоднозначности определения сдвига фазы на 180 градусов. С другой стороны, недостатки других методов - методов кодирования с переходами внутри информационного бита, состоят в том, что они требуют более высокочастотной синхронизации или меньшей скорости передачи данных.

3.2.3. Модуляция с распределенным спектром

При решении проблем связи, таких, например, как множественный доступ, защита от помех и подавление интерференций, учитывается ширина спектра, энергия сигнала и другие параметры. Модуляция с распределенным спектром (Spread Spectrum - SS), которая осуществляется за счет распределения энергии сигнала по полосе частот намного большей, чем требуется собственно сигналу, позволяет осуществить множественный доступ, защиту от помех и подавление интерференций. Системы RFID обычно используют методы модуляции с распределенным спектром в UHF и

микроволновом диапазоне частот. На этих частотах, как правило, регламенты допускают для систем с распределенным спектром большие выходные мощности сигналов, по сравнению с узкополосными системами Энергия распределяется в широкой полосе частот, уменьшая вероятность вредного влияния одних устройств на другие.

Известны два наиболее распространенных типа модуляции с распределенным спектром: прямая последовательность (Direct Sequence - DS) и скачкообразная перестройка частоты (Frequency Hopping - FH).

В DS модуляции псевдошумовой кодовый сигнал с периодом меньшим, чем битовый период информации, смешивается с сигналом сообщения, создавая выходной широкополосный сигнал. Чтобы восстановить сообщение, приемник должен демодулировать код той же псевдошумовой последовательностью, которая использовалась при передаче сигнала.

В системах FH со скачкообразной перестройкой частоты для передачи информации используют множество узкополосных каналов на частотах, выбранных из псевдослучайного списка, и перестраиваются на них. Это приводит к эффекту усреднения энергии в полосе частот перестройки. При этом для того, чтобы принять модулируемый сигнал приемники таких систем должны использовать тот же псевдослучайный список частот.

В пассивных системах RFID низкой стоимости сигналы с распределенным спектром часто используются иначе, чем в технологии связи. Для достижения полной DS или FH модуляции метке потребовалась бы чрезмерно сложная и энергоемкая обработка сигнала. Вместо этого, антенну метки проектируют таким образом, чтобы ее полоса пропускания охватывала всю ширину спектра сигналов, излучаемых считывателем. В этом случае метка получает всю мощность, заключенную в узкополосных перестраиваемых каналах или распределенную по полной ширине полосы частот при DS модуляции. Независимо от того, какая модуляция используется - DS или FH, сигналы считывателя модулируются по амплитуде и затем отражаются меткой. В технологии RFID такое решение достаточно эффективно, поскольку позволяет добиться более высокой мощности отраженного сигнала, как для узкополосных систем, так и для систем с распределенным спектром.

 

3.3. Вероятность ошибки

 

Вообще, есть два важных фактора для оценки системы связи - полоса пропускания и характеристики приема сигнала в присутствии шума. Мы уже рассмотрели вопросы, связанные с полосой пропускания, теперь мы рассмотрим качество функционирования системы в присутствии шума.

Числовой оценкой качества функционирования аналоговых систем является отношение мощности сигнала к мощности шума. В цифровых системах критерием качества является вероятность ошибки в одном двоичном разряде или вероятность появления ошибочных битов (bit error rate - BER).

BER - это вероятность возникновения ошибки, когда система должна принять решение о приеме одного из двух возможных сигналов. В случае модуляции ASK это сигналы высокого или низкого уровня (в системах с OOK низкий уровень равен нулю). Приемник имеет порог принятия решения, выше которого сигналы считаются сигналами высокого уровня, и ниже которого - низкого уровня. Полная вероятность ошибки (BER) является суммой вероятностей ошибки, связанной с обоими сигналами.

Когда детектирование когерентное, используется большее количество информации - информация об амплитуде и фазе. Когда детектирование некогерентное, используется информация только об амплитуде. При этом ошибки функционирования системы увеличиваются. Тем не менее из-за простоты и невысокой стоимости в аппаратуре RFID обычно используют некогерентное детектирование огибающей.

В сигналах, модулированных ASK и OOK, присутствуют только два уровня сигналов. Каким образом эти уровни представляют отдельный бит, зависит от используемого вида кодирования. Однако, независимо от вида кодирования, если ошибки сделаны в процессе определения уровня сигнала, возникнет битовая ошибка. Некоторые виды кодирования могут обнаружить такую ошибку, а другие не могут. В таком случае могут быть использованы другие методы обнаружения и исправления ошибки.

В беспроводных каналах шумы могут иметь разнообразную природу. Обычно рассматривают два вида шума - это импульсные помехи и гауссовский шум. Гауссовский шум обычно является результатом фонового излучения, тепловых помех и дробового шума. В устройствах связи ближнего действия, особенно в пассивных системах RFID невысокой стоимости, обычно наиболее важны импульсные помехи, которые являются результатом интерференции многих других мешающих излучений. Для вычисления BER систем RFID рассмотрим как импульсные помехи, так и гауссовский шум.

3.3.1. Импульсные помехи

Источниками импульсных помех может быть интерференция сигналов посторонних источников или эффект многолучевого распространения. Эти помехи наиболее вредны для систем RFID, в которых используются сигналы малой мощности и простые детекторы. Гильбертова модель ошибок, создаваемых импульсными помехами, представляется в виде цепи Маркова с двумя состояниями, при этом одно состояние может быть благоприятным,

когда вероятность ошибки невелика, а другое неблагоприятным, когда ошибки случаются с высокой вероятностью. Такую модель предложил Эллиотт, а другие авторы использовали и развили ее. Импульсные помехи могут искажать как отдельные биты, так и битовые блоки сигнала.

3.3.2. Гауссовский шум

При рассмотрении аддитивного гауссовского шума будем иметь в виду два уровня сигнала: с амплитудой, отличной от нуля, и с нулевой амплитудой. В зависимости от этих двух уровней плотности вероятности сигнала в присутствии шума различны. В общем случае плотность вероятности сигнала с шумом зависит от уровня сигнала. Наиболее простой случай - когда уровень сигнала равен нулю и шум является единственным компонентом приемника. Такая ситуация характерна OOK.

Однако в ASK с индексом модуляции меньше 1 всегда присутствует смесь сигнала с шумом. Мы рассмотрим различия в функциях плотности вероятности при изменении соотношения уровней сигнала и шума.

При передаче сигналов от считывателя к метке и от метки к считывателю, из-за необходимости применения упрощенных детекторов, малых уровней сигнала и, в результате, относительно высоких BER, для повышения достоверности приема информации целесообразно использовать алгоритмы обнаружения и исправления ошибок. Рассмотрим такие методы.

3.4 Обнаружение и коррекция ошибок

Хотя излучаемый считывателем сигнал имеет достаточно высокий уровень, метка содержит упрощенные схемы детектирования и обработки

сигнала, что приводит к высокой вероятности появления ошибок в прямой линии связи. В обратной линии связи сигнал, переданный меткой, имеет относительно низкий уровень. При этом, несмотря на то, что считыватель RFID имеет достаточно чувствительный приемник и гораздо более сложную обработку сигнала, из-за малого уровня сигнала также возможна высокая вероятность появления ошибок. Следовательно, в обеих линиях связи целесообразно использовать процедуры обнаружения или исправления ошибок.

Операции кодирования, дополненные возможностью обнаружения и исправления ошибок, требуют добавления дополнительных битов к первоначальному сообщению. В зависимости от количества битов и способа, которым они добавлены, эти коды могут исправлять или только обнаруживать ошибки. В общем случае эффективные коды с обнаружением и исправлением ошибок требуют большого количества дополнительных битов, широкой полосы пропускания и сложной обработки. В системах RFID время передачи информации ограничено и достаточно строго регламентируется. Следовательно, целесообразно применение методов, которые позволяют только обнаруживать ошибки.

Типичные методы обнаружения ошибок включают проверку четности, продольный контроль по избыточности (Longitudinal Redundancy Checking - LRC) и циклический контроль по избыточности (Cycling Redundancy Checking - CRC). При проверке четности к строке битов добавляется дополнительный бит, который показывает: четное или нечетное количество бит содержится в строке. Такая проверка очень проста, но все же бесполезна, если в строке имеется четное количество ошибок. Продольный контроль по избыточности требует действия рекурсивного исключающего ИЛИ для каждого байта в пределах блока данных. Результаты операции добавляются в конец строки и передаются. При приеме выполняется та же самая процедура. Если результат проверки не равен нулю, то произошла ошибка. При проверке четности многократные ошибки могут отменять друг друга. Циклический контроль по избыточности более надежен, но требует более сложной обработки. Операция CRC обеспечивает почти уникальную идентификацию битовой строки. Чем длиннее CRC, тем большее количество данных может быть надежно проверено. Поскольку циклы передачи данных в системах RFID относительно коротки, обычно используются 8-битный или 16-битный CRC.

Диапазоны частот RFID

 

Для описания радиопередающих устройств, которые обеспечивают одностороннюю или двухстороннюю связь и которые обладают слабой возможностью создавать помехи другим радиотехническим устройствам СЕРТ использует термин Short Range Devices – SRD. В устройствах SRD антенны радиоэлектронных приборов и, более того, рекомендует национальным администрациям, чтобы в определяемых ими параметрах при использовании устройств SRD отсутствовали излишне жесткие ограничения.

Во всем мире прилагаются усилия по гармонизации использования радиоспектра в этом классе устройств. Аппаратура RFID относится к классу устройств SRD и может функционировать только в назначенных частотных диапазонах, выделенных в большинстве стран. Рассмотрим эти диапазоны.

Диапазоны ISM

В таблицах распределения частот ITU выделяет определенные частоты

для использования в промышленности, науке и медицине (Industrial, Science

and Medicine – ISM). Эти диапазоны предназначены для применения в устройствах промышленного, научного и медицинского назначения, не предназначенных для дистанционного использования. Излучение этих устройств все же может оказывать помеховое влияние на работу других радио и телекоммуникационных служб. Поэтому для их использования выделяют определенные диапазоны частот. Основными диапазонами ISM являются (RR S5.150):

13,553 - 13,567 МГц;

26,957 - 27,283 МГц;

40,66 – 40,70 МГц;

902 - 928 МГц (в Регионе 2);

2,4 - 2,5 ГГц;

5,725 - 5,785 ГГц;

24 - 24,25 ГГц.

По усмотрению национальных администраций в качестве диапазонов ISM могут выделяться дополнительные диапазоны (RR S5.138):

6,675 - 6,795 МГц;

61,0 - 61,5 ГГц;

122 - 123 ГГц;

244 - 246 ГГц.

В десяти странах Европы диапазон 433,05 - 434,79 МГц также является ISM диапазоном (S5.280). В других странах Региона 1 он доступен для использования при условиях, оговоренных RR S5.138. Диапазоны ISM также могут использоваться другими радиослужбами при условии, что они будут совместимыми с устройствами ISM. При этом ITU, не налагая ограничений на излучаемую мощность, рекомендует, чтобы все страны (администрации) добивались минимизации излучения в ISM диапазонах (S15.13). Одновременно в рамках резолюции RR № 63 между ITU и IEC обсуждаются возможности ограничения влияния помех в диапазонах ISM другим радиослужбам.







Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.