Огнестойкость статически неопределимых конструкций
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Огнестойкость статически неопределимых конструкций





5.26.В статически неопределимых конструкциях, выполненных из монолитного железобетона (плитах, балках, ригелях и колоннах), огнестойкость больше, чем в сборном железобетоне. Однако в многопролетных и многоэтажных зданиях и сооружениях при локальном пожаре в одном пролете или на одном этаже взаимодействие отдельных монолитно сопряженных элементов приводит к возникновению дополнительных усилий в других пролетах, в которых нет пожара.

5.26.1Расчет многоэтажных и высотных зданий из монолитного железобетона следует производить с использованием сертифицированных в России компьютерных программ, согласованных с НИИЖБ: «Лира», «Мономах», «Stark-Es» и других.

Согласно СП 52-103-2007 пространственная конструктивная система (КС) здания рассматривается как статически неопределимая система, состоящая из взаимосвязанных несущих конструктивных элементов, обеспечивающих его прочность и устойчивость во время пожара и после него.

Расчетная схема здания при расчете огнестойкости включает физическую модель, данные о нормативных нагрузках, о требуемом пределе огнестойкости по потере несущей способности R колонн, стен, плит, балок, а также данные о нормативных сопротивлениях бетона и арматуры, их температурный нагрев от огневого воздействия пожара, коэффициенты условия работы бетона и арматуры, учитывающие изменение их механических свойств от воздействия температуры, коэффициенты, учитывающие изменение модуля упругости и температурные деформации материалов, критические температуры прогрева бетона и арматуры от огневого воздействия, температурные усилия и деформации конструктивных элементов от их неравномерного нагрева.

5.26.2 Распределение усилий от нормативной нагрузки и температурных усилий, вызванных огневым воздействием, в пространственно-деформируемых системах в значительной степени определяется жесткостными характеристиками, которые зависят от материала и температуры воздействия, типа конструкций и их напряженного состояния, влажности бетона и других факторов, которые при проектировании учесть сложно. Поэтому геометрические параметры и физические характеристики материалов и конструкций в расчете принимаются заданными.



5.26.3 Расчеты напряжений и деформаций железобетонных монолитных плоских и объемных элементов и их сопряжений разработаны только для нормальных сечений при простых воздействиях. Расчеты по наклонным и пространственным сечениям с трещинами имеются лишь для частных случаев, а для сложных воздействий и учетом многих факторов применяют различные упрощения.

Сложные пространственные геометрические схемы упрощают путем замены реальной конструкции условной схемой. Ребристый и пустотный диски перекрытий, а также структурное покрытие из стержней заменяются условной анизотропной пластиной постоянной толщины.

Колонны и балки аппроксимируются стержнями, приведенными к оси, а плиты и стены - пластинами, приведенные к серединной плоскости. Применяют континуальные, дисперсные расчетные модели. Наиболее широкое распространение получили дискретные расчетные модели, основанные на математической и геометрической дискредитации пространственных конструкций, рассчитываемых методом конечных элементов (МКЭ).

5.26.4Расчет огнестойкости несущих конструктивных систем включает определение усилий в элементах конструктивной схемы (колоннах, плитах, стенах) с учетом заданного стандартного пожара по длительности соответствующему требуемому пределу огнестойкости по потере несущей способности R каждого конструктивного элемента системы.

Расчет огнестойкости по потере несущей способности конструктивной системы следует производить в общем случае в пространственной постановке с учетом совместной работы надземных и подземных конструкций в условиях стандартного пожара.

5.26.5 Расчет огнестойкости по потере несущей способности производят с использованием линейных и нелинейных жесткостей железобетонных конструкций.

Линейные жесткости железобетонных элементов определяют как для сплошного упругого тела с учетом влияния кратковременного температурно-огневого воздействия на модуль упругости.

Нелинейные жесткости железобетонных элементов определяют по поперечному сечению с учетом развития неупругих деформаций в бетоне и арматуре, отвечающих кратковременному действию нагрузки.

Значение нелинейных жесткостей железобетонных элементов следует устанавливать в зависимости от класса бетона и арматуры, их температур нагрева от стандартного пожара для предельной стадии расчета.

5.26.6 В результате расчета несущей конструктивной системы должны быть установлены: в колоннах - значения продольных и поперечных сил, изгибающих моментов, а в необходимых случаях и крутящие моменты; в плоских плитах - значения изгибающих и крутящих моментов, поперечных и продольных сил; в стенах - значения нормальных и сдвигающих сил, изгибающих и крутящих моментов и поперечных сил.

Определение усилий в элементах конструктивной системы следует производить от непродолжительного действия нормативных постоянных и временно длительных нагрузок и температурных усилий от огневого воздействия стандартного пожара.

На первой стадии расчета огнестойкости для оценки усилий в элементах конструктивной системы допускается принимать приближенные значения жесткостей элементов с помощью обобщенных условных коэффициентов.

На последующих стадиях расчета конструктивной системы, когда известно армирование железобетонных элементов, в расчет следует вводить уточненные значения жесткостей элементов согласно указаниям действующих нормативных документов.

В результате расчета огнестойкости по потере несущей способности элементов конструктивной системы во время пожара должны быть установлены усилия (силы, моменты), которые должны быть больше или такими же, как до пожара, при воздействии нормативной нагрузки.

5.27 Усилия в статически неопределимой конструкции определяют по формулам строительной механики как в упругой системе. Единичные и грузовые перемещения определяют с помощью формулы Мора, в которой сдвиговые деформации, как правило, отбрасывают.

Перемещения в основной системе, вызванные воздействием температуры в i-м направлении, равны:

(5.75)

где Mt и Ni - изгибающий момент и продольная сила в сечении х-элемента основной системы от действия в i-м направлении соответствующей единичной силы;

(1/r)tx, εtx - температурные кривизна и деформация х-элемента, вызванные огневым воздействием.

С повышением температуры огневого воздействия до 500 °С наблюдаются наибольшие значения температурного момента. При температурах 900 °С температурный момент снижается. В практических расчетах криволинейное распределение температуры нагрева бетона по высоте сечения элемента приводится к прямолинейному. Перепад температуры по высоте сечения элемента определяют из равенства статических моментов и площадей действительной криволинейной эпюры и приведенной расчетной трапецеидальной эпюры температур. Для практических расчетов допускается у нагреваемой грани сечения температуру сжатого бетона принимать равной 500 °С при пределе огнестойкости до R120 включительно, 575 °С - при R180 и 650 °С при R240 и температуру растянутой арматуры - по теплотехническому расчету.

Для железобетонного элемента с трещинами в растянутой зоне при прямолинейной эпюре температур температурную кривизну оси элемента определяют:

при расположении растянутой арматуры у нагреваемой грани сечения

(5.76)

при расположении сжатого бетона у нагреваемой грани сечения

(5.77)

где αbt и αst - коэффициенты температурной деформации бетона и арматуры, принимаемые по табл. 2.4 и 2.9, в зависимости от температуры бетона менее нагретой и температуры бетона более нагретой грани сечения (500, 575 и 650 °С) и температуры нагрева арматуры.

Изгибающий момент от неравномерного нагрева по высоте действительного сечения элемента, заделанного на опорах, а также в замкнутых рамах кольцевого, квадратного и прямоугольного очертаний, имеющих одинаковое сечение, определяют по формуле

Mt = φt (1/r)tD, (5.78)

где (1/r)t - температурная кривизна, определяемая по формулам (5.76) и (5.77);

D - жесткость сечения в предельной по прочности стадии, определяемая по (5.79).

Коэффициент φt учитывает снижение температурного момента в предельной стадии. Для изгибаемых элементов φt = 0,5, для внецентренно сжатых и внецентренно растянутых элементов φ = 0, так как в предельной стадии температурных моментов у них нет.

Жесткость изгибаемых железобетонных элементов допускается определять по формуле

D = φ1Es,tAsz(h0 - x). (5.79)

Коэффициент φ1 в формуле (5.79) учитывает влияние температуры на жесткость элемента и принимается равным 0,5 при пределе огнестойкости до R120 включительно; 0,4 - при R180 и 0,3 - при R240.

Для элементов прямоугольного сечения при отсутствии (или без учета сжатой арматуры) значение z - расстояния от центра тяжести растянутой арматуры до точки приложения равнодействующей усилий в сжатой зоне - определяют по формуле

z = h0 - x/3. (5.80)

Для элементов прямоугольного, таврового (с полкой в сжатой зоне) и двутаврового поперечных сечений значения z допускается принимать 0,85h0. Высоту сжатой зоны в формулах (5.79) и (5.80) разрешается вычислять по формуле (5.10) без учета сжатой арматуры. При ξ = x/h0 > ξR значение х R h0. Температурный момент оказывает влияние на работу изгибаемого железобетонного элемента. При достижении предельных усилий от нагрузки, когда моменты от нагрузки и температуры суммируются, значение температурного момента снижается на 50 %. Это учитывается коэффициентом φt (формула 5.78).

В центрально и внецентренно сжатых и растянутых железобетонных элементах температурные моменты полностью снимаются продольной силой до наступления предельного состояния и не влияют на прочность.

Продольные температурные деформации в железобетонном элементе могут вызвать напряжения сжатия при несмещаемых опорах и увеличение эксцентриситета сжимающей силы в колоннах от температурного удлинения ригеля.

Для железобетонных элементов с трещинами в растянутой зоне при линейной эпюре температур по высоте сечения температурное удлинение оси элемента равно

; (5.81)

где αbt и αst принимают как в формулах (5.76) и (5.77).

5.28.Для статически неопределимых конструкций расчет предела огнестойкости следует выполнять в следующей последовательности.

1. Устанавливают возможность огневого воздействия на все несущие элементы системы и их минимальные пределы огнестойкости по потере несущей способности.

2. Теплотехническим расчетом или по приложениям А и Б от воздействия стандартного пожара, длительностью соответствующего принятому пределу огнестойкости, находят температуры нагрева бетона и арматуры в поперечном сечении несущего элемента системы.

3. Для каждого элемента от непродолжительного действия нормативных постоянных и временных длительных нагрузок находят их неблагоприятное сочетание.

4. При расчете упругой системы статически неопределимой конструкции определяют усилия в элементах.

5. По найденным значениям усилий определяют жесткость сечения. Жесткость следует определять с учетом наличия трещин от огневого воздействия по всей длине элемента и изменения физико-механических свойств бетона и арматуры от нагрева.

6. Температурные усилия учитывают от неравномерного нагрева по высоте сечения элемента в изгибаемых элементах при расчете по предельным усилиям.

7. При расчете методом предельного равновесия используют перераспределение усилий и определяют моменты в пластических шарнирах только от нагрузки.

8. Требуемый предел огнестойкости каждого элемента будет обеспечен, если усилия от нормативной нагрузки и температуры во время пожара будут больше или равны усилиям от нормативной нагрузки до пожара.

В общем случае, расчет предела огнестойкости по потере несущей способности статически неопределимой конструкции зависит от схемы разрушения системы в целом, когда она превратится в механизм. Однако за предел огнестойкости конструкции следует принимать минимальный предел одного несущего элемента системы. Наступление предела огнестойкости одного несущего элемента системы не всегда приводит к обрушению всей конструкции. Однако с практической точки зрения, такой вид отказа необходимо учитывать.

ПРИМЕРЫ РАСЧЕТА

Пример 15.Дано. Опорное сечение двухпролетной балки высотой 700 мм и шириной 350 мм; бетон класса В30; Rbn = 22 МПа; Еb = 32,5·103 МПа; арматура класса А400; Rsn = 400 МПа, Rsc = 355 МПа; а = 60 мм, а' = 40 мм, Еs = 2·105 МПа; момент в опорном сечении от нормативной нагрузки Мп = -800 кН·м (рис. 5.27); Аs = 4826 мм2 (6Ø32); А' = 4021 мм2 (5Ø32).

Требуется определить предел огнестойкости опорного сечения при стандартном огневом воздействии длительностью 120 мин.

Расчет.Определение температурного момента производим по действительному опорному сечению балки с учетом изменения свойств бетона и арматуры от воздействия температуры. По рис. Б.2 приложения Б находим температуру прогрева бетона и арматуры. На опоре стержни растянутой арматуры имеют температуру: два крайних стержня 440 °С; следующих 2 стержня 140 °С и средние два стержня 50 °С. Средняя температура нагрева растянутой арматуры 210 °С. Для этой температуры по табл. 2.8 находим γst = 1,0; βs = 0,92 и по табл. 2.9 αst = 12,5·10-6 °С-1. Стержни сжатой арматуры нагреваются: два крайних стержня до 660 °С; следующих 2 стержня до 430 °С и средний стержень до 380 °С. Средняя температура нагрева сжатой арматуры 512 °С. Для этой температуры по табл. 2.8 находим γst = 0,57. Согласно п. 5.3 среднюю температуру бетона сжатой зоны находим на расстоянии 0,2h0 = 0,2(700 - 60) = 130 мм. По рис. 5.27 tbm = = 450 °С и по табл. 2.2 γbt = 0,83. При tb = 500 °С по табл. 2.4 αbt = 11·10-6 °С-1.

По формуле (5.79)

По формуле (5.9)

Плечо внутренней пары сил по (5.80)

z = 640 - 302/3 = 540 мм.

Жесткость опорного сечения по (5.79)

D = 0,5·2·105·4826·540(640 - 302) = 81·1012 Н·мм2.

Температурный момент по (5.78)

Mt = 0,5·4,5·10-6·81·1012 = 182 кН·м.

Суммарный момент в опорном сечении

М = Mt + Мп = 182 + 800 = 982 кН·м.

Огнестойкость опорного сечения по потере несущей способности при длительности огневого воздействия 120 мин проверим по условию (5.10):

М = 982 < 22·0,83·350·302 (640 - 0,5·302) +

+ 355·0,57·4021·(640 - 40) = 1432 кН·м.

Условие выполняется и опорное сечение обеспечивает предел огнестойкости по потере несущей способности R120.

Рис. 5.27. К примеру 15. Распределение температуры в бетоне и арматуре опорного сечения балки при длительности трехстороннего стандартного пожара 120 мин









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.