Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Эксплуатация и мониторинг силовой установки





ГЛАВА 1 - ВВЕДЕНИЕ

Турбинные двигатели

Эксплуатация и мониторинг силовой установки

(См. материал в разделе Винты поршневых двигателей)

· Описание терминов «Альфа-диапазон» и «Вета-диапазон» РУД - (?) ТВД. (См. материал в разделе Винты поршневых двигателей).

См. материалы по Приборному оборудованию двигателей

· Название и описание назначения приборов мониторинга турбовентиляторного двигателя.

· Название и описание назначения приборов мониторинга турбовинтового двигателя.

Принципы работы

· Принцип получения тяги у турбореактивных и турбовентиляторных двигателей.

· Принцип получения тяги у турбовинтовых (турбовинтовентиляторных) двигателей.

· Описание изменений состояния газа в ГТД с помощью диаграммы рабочего цикла.

· Причина ограничения доступной тяги двигателя в зависимости от температуры газа в турбине.

· Названия основных конструктивных элементов различных типов ГТД.

· Объяснение терминов «тяговый КПД» и «термический КПД».

· Описание влияния полной степени повышения давления на термический КПД.

· Объяснение изменений тягового КПД для турбореактивных, турбовентиляторных и турбовинтовых двигателей.

· Объяснение термина «удельный расход топлива» для турбореактивных и турбовинтовых двигателей.

Давление, температура и расход воздуха в ТРД

· Описание изменения статического давления, температуры и осевой скорости внутри ГТД в крейсерском полете.

· Описание различий между абсолютной, окружной и осевой скоростью.

Типы конструкции

· Объяснение термина «эквивалентная лошадиная сила».

· Описание принципов работы турбореактивных, турбовентиляторных и турбовинтовых двигателей.

· Объяснение термина «степень двухконтурности».

· Перечисление преимуществ и недостатков турбореактивных, турбовентиляторных и турбовинтовых двигателей.

 

График зависимости объема от давления в рабочем цикле

График зависимости объема от давления, приведенный на рис. 1.3 (цикл Брайтона), представляет рабочий цикл ГТД в упрощенной форме.

Рис. 1.3. График зависимости объема от давления в рабочем цикле ГТД

Воздух с атмосферным давлением поступает в двигатель в точке А и сжимается вдоль линии А-В.

Топливо в камеры сгорания добавляется в точке В и горит, теоретически, при постоянном давлении.

Фактически, в камере сгорания существуют потери давления из-за возникновения завихрений и турбулентности, вызывающих снижение давления по длине камеры от 3 до 6%. Не смотря на это,происходит значительное увеличение объема воздуха в камере сгорания.

Между точками С и D газ после сгорания расширяется в турбине и реактивном сопле, теоретически, до величины атмосферного давления перед выбросом в атмосферу.

 

Горение при постоянном давлении

Как утверждалось ранее, теоретически горение в ГТД происходит при постоянном давлении. Это частично достигается в непрерывном процессе цикла Брайтона, а фактически камера сгорания не является замкнутым пространством.

Данные обстоятельства препятствуют возникновению колебаний давления, как это происходит в поршневом двигателе, где необходимо приспосабливаться к пиковому давлению, превышающему 1 000 фунтов на квадратный дюйм. Такие давления вынуждают использовать в поршневом двигателе чрезвычайно прочные и тяжелые конструкции и высокооктановые топлива для предотвращения детонации.

На контрасте, в ГТД использование низкооктановых топлив и относительно легких конструктивных методов является, скорее, правилом, чем исключением.

Ограничение температуры в двигателе

ТРД является тепловой машиной. Чем выше температура горения, тем больше расширение газов и эффективность двигателя. Однако существует лимит температуры, которая может достигаться в турбине после камеры сгорания.

Этот лимит обусловлен материалами, из которых изготавливается сопловой аппарат и лопатки рабочих колес.

Использование современных материалов и высокоэффективных методов охлаждения в сопловом аппарате и лопатках рабочих колес позволяет применять более высокие температуры газа в двигателях последних моделей и достигать большей эффективности, чем у предшественников.

 

 

1.7. ПРИМЕНЕНИЕ ГАЗОВЫХ ЗАКОНОВ В ГТД

Воздух, который является рабочим телом в ГТД, претерпевает различные изменения: давления, температуры и объема – из-за получения и отдачи теплоты во время рабочего цикла двигателя.

Эти изменения соответствуют принципам, присущим комбинации законов Шарля и Бойля.

Закон Бойля гласит:

Газовоздушный поток в ТВД

На рис. 1.7 показаны два турбовинтовых двигателя с центробежным и осевым компрессорами.На выходе ТВД мы имеем сумму мощности на валу, развиваемой в турбине и остаточной реактивной тяги. Это называется эквивалентная мощность на валу (ESHP).

Рис. 1.7. ТВД с центробежным и осевым компрессорами

Главным отличием ТРД и ТВД является способ преобразования всей энергии газового потока в механическую мощность.

В ТРД большая часть энергии газового потока используется на привод компрессора, как и в ТВД, но остаточная энергия в ТРД используется в качестве тяги, а остаточная энергия в ТВД используется на привод винта. Только небольшая величина «реактивной тяги» из выхлопной системы ТВД с эффективной турбиной может быть описана как «остаточная тяга».

Не учитывая данное отличие, воздушный поток в двигателе фактически одинаковый в любом варианте. Компрессор направляет воздух в камеру сгорания, где к нему добавляется топливо, и при номинальном постоянном давлении достигается существенное увеличение его объема.

Газ расширяется в турбине, где его температура падает, а давление и скорость преобразуются в механическую энергию для привода компрессора (компрессоров) и винта через редуктор.

Тяговый КПД

Как объяснялось ранее, тяга является произведением массы на ускорение. Можно продемонстрировать, что одна и та же тяга может вырабатываться либо с помощью сообщения небольшого ускорения большой массе воздуха, либо придания маленькой массе воздуха большого ускорения. На практике первый вариант предпочтительнее, т.к. намного ниже потери на турбулентность и выше тяговый КПД. На рис. 1.11 показаны уровни тягового КПД для нескольких разных типов ГТД.

Рис. 1.11. Тяговый КПД разных типов ГТД

Наибольший тяговый КПД на низких воздушных скоростях может создать ТВД. Однако на скорости выше 350 миль/час эффективность винта резко падает из-за местных искажений обтекания потоком на законцовках лопастей.

По сравнению с ТВД тяговый КПД ТРД намного ниже на низких воздушных скоростях.

Однако при увеличении воздушной скорости выше 800 миль/час тяговый КПД начинает возрастать и намного превышает возможности ТВД, не идя с ним ни в какое сравнение. Возможный КПД приближается к 90%.

Крейсерские скорости порядка 800 миль/час в настоящее время не достижимы для большинства транспортных самолетов, и это означает, что в среднем диапазоне скоростей, в котором эксплуатируется большинство современных транспортных самолетов, существует ниша для ТРДД.

Тяговый КПД данного типа двигателей, включающих турбовентиляторные, находится примерно посередине между ТВД и ТРД. Обрабатывая сравнительно большой массовый расход воздуха на низких реактивных скоростях, ТРДД создает тяговый КПД, превышающий КПД ТВД и ТРД на нормальной воздушной скорости для транспортного самолета.

 

ГЛАВА 2 – ВОЗДУХОЗАБОРНИКИ

Воздухозаборник

· Постановка самых важных задач воздухозаборника двигателя.

· Описание геометрии дозвукового воздухозаборника скоростного напора.

· Описание изменения газовых параметров в воздухозаборнике скоростного напора на разных скоростях.

· Обоснование назначения вторичных створок воздухозаборника.

· Описание назначения и принципа работы многоскачковых воздухозаборников на сверхзвуковых скоростях полета.

· Перечисление различных типов многоскачковых воздухозаборников и определение их на различные самолеты.

· Описание причин и опасностей следующих эксплуатационных проблем, связанных с воздухозаборниками двигателей:

- отделение потока, особенно при боковом ветре на земле;

- обледенение воздухозаборника;

- повреждение воздухозаборника;

- всасывание посторонних предметов;

- сильная турбулентность в полете.

· Описание действий пилота для парирования перечисленных проблем.

· Описание условий и обстоятельств во время наземных операций, когда возникает опасность всасывания посторонних предметов или людей в воздухозаборник.

Воздухозаборник

Воздухозаборник двигателя встроен в конструкцию планера или является частью гондолы. Он разработан таким образом, чтобы обеспечивать относительную защиту от подачи турбулентного воздуха на фронтальную плоскость КНД или вентилятора. Конструкция канала воздухозаборника оказывает серьезное влияние на характеристики производительности двигателя на всех воздушных скоростях и углах атаки для предотвращения помпажа компрессора.

Простейшей формой воздухозаборника является канал с одним входом и округлым поперечным сечением типа «пито» (скоростного напора). Он обычно имеет прямолинейную форму у двигателей, расположенных на крыле, но может иметь и S-образную форму у расположенных в хвосте двигателей (например, 727, TriStar). Для S-образного канала характерна нестабильность воздушного потока, особенно во время взлетов с боковым ветром.

Воздухозаборник типа «пито» оптимизирует использование скоростного напора и подвержен минимальным потерям давления скоростного напора с увеличением высоты. Эффективность воздухозаборника данного типа снижается из-за образования на кромке скачков уплотнения при приближении скорости самолета к звуковой.

Дозвуковой воздухозаборник обычно имеет расширяющийся канал, позволяющий снизить скорость и повысить давление на входе компрессора при увеличении воздушной скорости.

Давление внутри воздухозаборника ГТД при работе двигателя на стоянке ниже атмосферного. Это происходит из-за высокой скорости потока через входной канал. При движении самолета давление в воздухозаборнике начинает расти. Момент, когда давление в воздухозаборнике сравнивается с атмосферным, называется восстановлением давления скоростного напора. Этот момент обычно наступает на скорости около 0,1 М до 0,2 М. При дальнейшем увеличении скорости самолета, воздухозаборник создает все большее сжатие от скоростного напора, и степень повышения давления в компрессоре от этого увеличивается. Это приводит к повышению тяги без увеличения расхода топлива. Это показано ниже. Вторичные створки воздухозаборника позволяют подавать в компрессор дополнительный воздух во время работы на высокой мощности, когда самолет находится на стоянке или на низких воздушных скоростях/больших углах атаки (Диаграмма Харриера).

 

Рис. 2.1. Восстановление давления скоростного напора

Подвижные воздухозаборники

У подвижных воздухозаборников изменяется площадь входного поперечного сечения (Concorde) с помощью подвижного центрального конуса (SR 71). Это позволяет контролировать скачок (скачки) уплотнения на входе компрессора.

Эксплуатационные расчеты

Взлет. Воздухозаборник двигателя разработан для поддержания стабильного воздушного потока на входе компрессора; любые нарушения потока, вызывающие его турбулентность, могут вызвать срыв потока или помпаж компрессора.

Воздухозаборник не может справиться с большими углами атаки и поддерживать стабильный поток воздуха. Один из наиболее критических моментов возникает во время ускорения двигателя до взлетной тяги. На поток воздуха в воздухозаборнике может повлиять любой боковой ветер, особенно на двигатели, установленные в хвосте и имеющие воздухозаборники S-образной формы (TriStar, 727). Для предотвращения возможного срыва потока и помпажа в эксплуатационных руководствах предусмотрена процедура, которым необходимо следовать. Она обычно заключаются в поступательном перемещении самолета перед плавным повышением режима работы до взлетного, примерно 60 – 80 узлов (взлет без остановки).

Обледенение. В определенных условиях может произойти обледенение воздухозаборника. Обычно это происходит, когда температура наружного воздуха ниже +10°, присутствует видимая влажность, стоячая вода на ВПП или дальность видимости на полосе менее 1 000 м. Если данные условия присутствуют, пилот должен включить антиобледенительную систему двигателя.

Повреждение. Повреждение воздухозаборника или любая шероховатость внутри его канала может вызвать турбулентность входящего потока воздуха и нарушить поток в компрессоре, вызывая срыв или помпаж. Будьте внимательны к повреждениям и неравномерной шероховатости поверхности панелей обшивки при осмотре воздухозаборника.

Всасывание посторонних предметов. Всасывание посторонних предметов во время нахождения самолета на земле или вблизи нее неизбежно вызывает повреждение лопаток компрессора. Уделяйте достаточное внимание зоне на земле перед воздухозаборниками двигателей перед их запуском, чтобы гарантировать отсутствие валяющихся камней и другого мусора. Это не относится к двигателям, установленным на хвосте, чьи воздухозаборники расположены над фюзеляжем; они намного меньше страдают от всасывания посторонних предметов.

Турбулентность в полете. Сильная турбулентность в полете может не только заставить пролить кофе, но и нарушить воздушный поток в двигателях. Использование механической скорости для прохождения турбулентности, указаннойв эксплуатационном руководстве, и правильного значения RPM/EPR поможет снизить вероятность неисправности в компрессоре. Также может быть целесообразно или необходимо активировать непрерывное зажигание для снижения вероятности срыва пламени в двигателе.

Наземные операции. Большинство повреждений компрессора вызвано всасыванием посторонних предметов. Повреждение лопаток компрессора приводит к изменению геометрии системы, что может повлечь ухудшение производительности, срыв потока в компрессоре и даже помпаж двигателя. Для предотвращения возникновения таких повреждений важно принимать предварительные меры по удалению мусора (обломков) из зоны стоянки. Далее пилот во время предполетного осмотра должен убедиться в отсутствии посторонних предметов в воздухозаборниках двигателей. Ответственность на этом не заканчивается, после полета необходимо установить заглушки на входные и выхлопные каналы для предотвращения накапливания загрязнений и авторотации.

Во время запуска, руления и реверсирования тяги в воздухозаборник могут всасываться посторонние предметы, и для предотвращения потенциального повреждения необходимо применять минимальную тягу.

Во время работы ГТД происходили серьезные повреждения и некоторые с летальным исходом из-за всасывания персонала в воздухозаборники. При необходимости выполнять работы в непосредственной близости от работающего двигателя необходимо соблюдать особую осторожность.

 

 


ГЛАВА 3 – КОМПРЕССОРЫ

Компрессор

· Перечисление назначений компрессора.

· Описание центробежного и осевого типов компрессоров, применяемых для авиационных двигателей.

· Название основных компонентов ступени компрессора и описание их функций.

· Описание изменений газовых параметров (p, t, v) в ступени компрессора.

· Определение термина «степень повышения давления» и указание ее величины для ступени центробежного и осевого компрессоров.

· Указание достоинств двухступенчатого центробежного компрессора.

· Перечисление преимуществ и недостатков центробежного компрессора по сравнению с осевым.

· Название некоторых двигателей, имеющих осевой и центробежный компрессоры.

· Объяснение сужения кольцевого воздушного канала в осевом компрессоре.

· Указание входной и выходной скорости ступени осевого компрессора.

· Указание, что осевые компрессоры имеют степени повышения давления до 35 и выходные температуры до 600°C.

· Описание причины крутки лопаток компрессора с помощью треугольников скоростей.

· Указание назначения ВНА.

· Указание причины щелканья компрессора при вращении на земле, т.е. из-за авторотации.

· Описание конструкции двух-(и трех-)вальных компрессоров современных двигателей, принципов их работы и достоинств.

· Определение терминов «срыв потока компрессора» и «помпаж».

· Указание следующих условий, вызывающих срыв потока и помпаж:

o резкое увеличение расхода топлива при повышении оборотов (RPM);

o низкие обороты, т.е. малый газ;

o сильный боковой ветер на земле;

o обледенение воздухозаборника двигателя;

o загрязнение или повреждение лопаток компрессора;

o повреждение воздухозаборника двигателя.

· Описание следующих индикаторов срыва потока и помпажа:

o ненормальный шум в двигателе;

o вибрации;

o колебания RPM;

o повышение EGT;

o иногда вырывание горящих газов из воздухозаборника и выхлопного устройства.

· Перечисление действий пилота в случае срыва потока.

· Описание конструктивных методов для минимизации вероятности возникновения срыва потока и помпажа.

· Указание мер для пилота по предотвращению возникновения срыва потока и помпажа.

· Описание диаграммы компрессора (диапазон помпажа) с линиями RPM, границы срыва потока, устойчивой работы и ускорения.

021 03 03 03 Диффузор. Описание функций диффузора

 

Типы компрессоров

Перед добавлением топлива в камеры сгорания и последующего расширения продуктов сгорания в турбинах, воздух необходимо сжать.

Существует два основных типа компрессоров, применяемых в настоящее время в двигателях: один формирует осевой поток через двигатель, а другой создает центробежный.

В обоих случаях компрессоры приводятся турбиной, которая соединяется с рабочими колёсами компрессоров при помощи вала.

 

Управление расходом воздуха

Увеличение степени повышения давления компрессора прогрессивно усложняет обеспечение его эффективной работы во всем диапазоне частот. Это обусловлено фактом, что степень повышения давления в двигателе падает при падении частоты вращения компрессора. Поэтому при замедлении двигателя, объем поглощаемого воздуха увеличивается, т.к. он не сжимается с прежней силой.

Увеличенный объем воздуха в секции КВД осложняет его прохождение через доступное пространство, скорость потока снижается, и в некоторых случаях может вызвать запирание и турбулентность.

Такое снижение скорости происходит по всей длине компрессора и может вызвать феномен под названием срыв потока, который, в случае несвоевременного выявления, может усугубиться и перерасти в помпаж, ситуацию, когда, в худшем случае, поток воздуха в двигателе мгновенно меняет направление на обратное.

 

Срыв потока

 

Угол атаки лопатки компрессора складывается из осевой скорости воздуха, огибающего лопатку, и скорости ее вращения.

Эти две скорости складываются и образуют вектор, который дает фактический угол атаки воздушного потока на лопатке.

Срыв потока компрессора можно описать как дисбаланс между двумя скоростями, который может произойти по разным причинам, ниже перечислены некоторые из них:

a) Чрезмерный расход топлива, вызванный резким разгоном двигателя (осевая скорость понижается из-за увеличения обратного давления в камере сгорания).

b) Работа двигателя выше или ниже расчетных параметров RPM (увеличение или уменьшение скорости вращения лопатки компрессора).

c) Турбулентность или нарушение воздушного потока в воздухозаборнике (уменьшается осевая скорость).

d) Загрязненные или поврежденные компоненты компрессора (снижение осевой скорости из-за снижения степени повышения давления).

e) Загрязненная или поврежденная турбина (потеря мощности на привод компрессора вызывает снижение осевой скорости из-за снижения степени повышения давления).

f) Слишком бедная топливно-воздушная смесь из-за резкого замедления двигателя (осевая скорость увеличивается из-за уменьшения обратного давления в камере сгорания).

 

Любое из перечисленных выше условий может привести к срыву потока в компрессоре, а когда это произойдет, возникнет частичное обрушение воздушного потока в двигателе.

Индикаторами срыва потока в компрессоре является увеличение уровня вибрации двигателя и повышение температуры выхлопных газов (EGT).

Последний эффект (увеличение EGT) вызывает факт уменьшения поступления воздуха в камеры сгорания, соответственно, уменьшение количество воздуха на охлаждение продуктов сгорания, выхлопных газов.

Срыв потока компрессора является прогрессирующим феноменом, и теоретически может начаться на одной лопатке, ухудшая работу всей ступени, а затем, если не принять своевременных мер по локализации, охватывает весь двигатель.

 

Помпаж

Прогрессивное ухудшение ситуации приведет к полному обрушению потока в двигателе, называемому помпаж. В некоторых случаях это может вызвать мгновенное реверсирование газов в двигателе с вырыванием воздуха из воздухозаборника, сопровождаемым громким хлопком. При возникновении помпажа дроссель соответствующего двигателя нужно закрывать медленно.

Такую ситуацию наиболее часто вызывают неисправности или недостатки обслуживания топливной системы, а в чрезвычайных ситуациях могут прикладываться настолько высокие изгибные нагрузки на лопатки ротора компрессора, что они входят в зацепление с лопатками статора с потенциальными катастрофическими последствиями.

Помимо громкого шума, обычно сопровождающего помпаж, существует большой рост EGT, а результирующая потеря тяги может вызвать рыскание самолета.

 

Поворотный ВНА

Поворотный ВНА устанавливается на двигателях, имеющих особую проблему со срывом потока в компрессоре на низких оборотах во время ускорения или замедления вращения ротора двигателя. Лопатки устанавливаются непосредственно перед первой ступенью ротора и могут автоматически поворачиваться вокруг своих осей для изменения проходного канала в компрессор для воздушного потока. Т.о. поддерживается правильное соотношение между частотой вращения компрессора и расходом воздуха в его передних ступенях.

На низких частотах вращения компрессора лопатки поворотного ВНА развернуты так, чтобы создавать поворот воздушного потока, корректируя его относительное направление для достижения оптимального угла атаки на рабочих лопатках ротора. Оптимальный угол атаки позволяет сглаживать и ускорять разгон двигателя.

 

ГЛАВА 4 – КАМЕРЫ СГОРАНИЯ

Камера сгорания

· Определение задачи камеры сгорания.

· Перечисление требований к горению.

· Описание принципа работы камеры сгорания.

· Утверждение, что низкая скорость распространения фронта пламени является причиной диффузии воздушного потока на входе камеры сгорания.

· Определение терминов «первичный поток» и «вторичный поток».

· Объяснение соотношений смеси топливо:первичный поток и топливо:вторичный поток.

· Описание изменений газовых параметров (p, t, v) в камере сгорания.

· Утверждение, что температура на выходе камеры сгорания находится в диапазоне от 1 000°Cдо 1 500°C.

· Название основных компонентов камеры сгорания и их задач.

· Описание системы трубчатой камеры сгорания, трубчато-кольцевой, кольцевой и камеры с поворотом потока и установление различий между ними.

· Описание принципов работы различных распылительных форсунок.

 

4.1. ЗАДАЧА КАМЕРЫ СГОРАНИЯ

Камера сгорания должна удерживать горючую смесь воздуха (поступающего из компрессора) и топлива (распыливаемого форсунками топливной системы) для обеспечения максимальной теплоотдачи при относительно постоянном давлении, чтобы подавать на вход турбины равномерно расширившийся, нагретый и ускоренный поток газов. Это непростая задача, нонесмотря на это конструкция камер сгорания постоянно совершенствуется для обеспечения более эффективного использования топлива с меньшим загрязнением атмосферы.

Значение эффективности сгорания постоянно возрастает из-за повышения себестоимости топлива и повышение осознания общественностью опасности загрязнений атмосферы выхлопным дымом.

 

4.2. ДОПУСТИМЫЙ РОСТ ТЕМПЕРАТУРЫ

Существует лимит максимальной температуры газа на выходе камеры сгорания. Он обусловлен материалами, из которых изготовлены лопатки соплового аппарата и турбина. Небольшое превышение этого лимита будет означать возможное нарушение целостности турбины с вероятными катастрофическими последствиями.

4.3. ТРЕБУЕМЫЙ РОСТ ТЕМПЕРАТУРЫ

Современные материалы способны выдерживать температуру газа в камере сгорания 2000 °С. На выходе из камеры сгорания температура газа должна быть снижена до 1000 °C … 1500 °C.

Учитывая, что воздух уже подогрет в результате сжатия в компрессоре примерно до температуры 600°C, для дальнейшего роста температуры необходимо добавить соответствующее количество топлива.

Это, разумеется, будет температура газов при работе двигателя на полной мощности. Для пониженных режимов работы потребуется меньший расход топлива в камеру сгорания для поддержания стабильного и эффективного горения в широком диапазоне условий эксплуатации двигателя.

 

4.4. СКОРОСТЬ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ КЕРОСИНА

Воздух в камеру сгорания поступает приблизительно с той же скоростью, с которой он попадает в воздухозаборник двигателя, не редко скорость составляет 500 футов в секунду.

Скорость распространения пламени керосина – скорость, с которой передняя кромка факела перемещается по пару – составляет только один или два фута в секунду. Если горящий керосин поместить в воздушный поток, перемещающийся со скоростью 500 футов в секунду, он мгновенно сгорит.

Необходимо что-то сделать, чтобы замедлить воздушный поток после выхода компрессора и перед попаданием его в первичную зону – зону внутри камеры сгорания, где он смешивается с топливом и воспламеняется.

На рис. 4.1 показано как снижается скорость и повышается давление воздушного потока после выхода из компрессора и перед входом в камеру сгорания.

Фактически, давление в этой точке является самым высоким в двигателе. Снижение скорости, однако, все еще не достаточное. Необходимо осуществлять дальнейшее снижение скорости потока, чтобы не допустить срыва пламени.

На рис. 4.1 показано, как воздух поступает в первичную зону, проходит через носовую часть перед разделением на поток через перфорированный раструб и лопаточный завихритель.

Рис. 4.1. Разделение потока в камере сгорания

 

4.5. ПЕРВИЧНЫЙ ВОЗДУХ

Первичный воздух составляет 20% от потока, поступающего в камеру сгорания. Это воздух, который смешивается с топливом и горит.

Проходя через раструб и лопаточный завихритель, скорость потока снижается и начинается рециркуляция, требуемая, если пламя не поджигается.

 

4.6. ВТОРИЧНЫЙ ВОЗДУХ

Воздух, не попавший в носовую часть, проходит в пространство между жаровой трубой и воздушным корпусом. Часть этого воздуха попадает в жаровую трубу через отверстия для вторичного потока. Вторичный воздух, около 20% от общего количества, взаимодействует с первичным потоком, проходящим через завихритель, и образует тороидальный вихрь – область с низкой скоростью воздушного потока, напоминающий пончик или дымовое кольцо. Это стабилизирует и фиксирует факел и предотвращает перемещение его вдоль жаровой трубы из зоны распылительных форсунок.

Температура газов в центре первичной зоны достигает 2 000°C. Это слишком высокая температура для материалов сопловых лопаток и рабочих лопаток турбины, поэтому требуется дальнейшее понижение температуры газов до выхода из камеры сгорания.

Рис. 4.2. Камера сгорания раннего образца

 

4.7. ТРЕТИЧНЫЙ ВОЗДУХ

Оставшиеся 60% общего потока, третичный воздух, прогрессивно вводятся в жаровую трубу для охлаждения и разбавления газов до того, как они попадут в турбину. Третичный воздух используется для охлаждения газов в камере сгорания и стенок воздушного корпуса.

Камера сгорания на рис. 4.2 является одной из нескольких, которые применялись в ранних системах трубчатых камер. В более современных конструкциях используются различные методы охлаждения воздушного корпуса, называемые транспирационным охлаждением, когда воздушная пленка проходит между слоями, формирующими стенки воздушного корпуса.

 

4.8. КОМПОНЕНТЫ КАМЕРЫ СГОРАНИЯ

На рис. 4.2 показаны некоторые интересные компоненты ступенчатой камеры сгорания.

У большинства ГТД имеется только два воспламенителя. Фактически двигатель хорошо запускается и от одного воспламенителя, однако, имея только два необходимо найти средства распространения пускового пламени между камерами сгорания. Им является соединительное устройство (внутренняя трубка).

Стазу после поджига пламя в камере с воспламенителем вызывает там рост давления. Перепад давлений между данной камерой и сопряженной приводит в движение горючие газы, они проходят через соединительной устройство и поджигают смесь.

Этот процесс в двигателе продолжается по кругу, пока смеси по всех камерах не будут подожжены, когда давления в камерах сравняются, и поток через соединительное устройство не иссякнет.

Уплотнительное кольцо со стороны турбины допускает удлинение камеры сгорания из-за температурного расширения. Камера со стороны компрессора зафиксирована болтами и не может расширяться в этом направлении. Уплотнительное кольцо, поддерживающее герметичность газового тракта, допускает расширение камеры внутрь сопловой коробки – части двигателя непосредственно примыкающей к сопловым лопаткам.

Гофрированные соединения пропускают третичный поток в жаровую трубу, вызывая постепенное уменьшение температуры газов до попадания в сопловой аппарат.

 

4.9. КОНСТРУКЦИЯ ТРУБЧАТОЙ КАМЕРЫ СГОРАНИЯ

Конструкция прямолинейной трубчатой камеры сгорания была усовершенствована на базе оригинальной разработки сэра Франка Уиттла. Она использовалась на некоторых ранних двигателях с осевым потоком и до сих пор используется на двигателях с центробежными компрессорами, такими как Rolls-RoyceDart.

Она состоит из восьми или более камер, показанных на рис. 4.2, расположенных вокруг корпуса двигателя позади секции компрессора. Каждая камера представляет собой жаровую трубу с индивидуальным воздушным корпусом.

На рис. 4.3 показана система трубчатой камеры сгорания, аналогичная применяемой на Rolls-RoyceAvon, который был мощным (для того времени) двигателем с осевым компрессором, используемым на протяжении долгого времени для многих различных типов военных и коммерческих самолетов,

На рис. 4.3 хорошо видна носовая часть (заборник первичного воздуха), соединительное устройство и дренажные трубки.

Дренажные трубки предназначены для случая отказа на запуске, более известного как ложный запуск. Это происходит, когда смесь в камерах сгорания не воспламеняется во время старта.

В двигатель будет подано значительное количество топлива, и если его не удалить перед следующим запуском, получим очень длительный высокотемпературный и опасный выброс пламени из задней части двигателя.

Рис. 4.3. Система трубчатой камеры сгорания (основано на оригинальных чертежах фирмы Rolls-Royce)

 

4.10. СИСТЕМА ДРЕНАЖА ТОПЛИВА

В настоящее время известны два способа удаления топлива из двигателя. Первый – с помощью дренажной системы, второй – путём испарения локальных остатков в камерах сгорания и реактивном сопле. В дренажной системе применяются дренажные трубки, которые соединяют самую нижнюю часть каждой камеры с камерой, расположенной ниже.

Топливо, оставшееся после ложного запуска, будет стекать из верхней части двигателя в нижнюю камеру. Оказавшись в нижней камере, топливо будет удаляться через подпружиненный дренажный клапан, расположенный в положении «на 6 часов». Во время нормальной работы двигателя внутреннее давление удерживает клапан в закрытом положении.

Для испарения любых локальных остатков топлива из камер сгорания выполняется прокрутка двигателя в цикле продувки.

С помощью мотора стартера двигатель прокручивается в течение времени, соответствующего нормальному циклу полного запуска, с отключением подачи топлива ВД и системы зажигания. Камера сгорания будет продуваться сжатым воздухом, что способствует испарению любых остатков топлива.

 

4.11. КОНСТРУКЦИЯ ТРУБЧАТО-КОЛЬЦЕВОЙ КАМЕРЫ СГОРАНИЯ

Конструкциятрубчато-кольцевой камеры сгорания, показанная на рис. 4.4, иногда называется турбо-кольцевой.

 

Рис. 4.4. Система трубчато-кольцевой камеры сгорания (основано на оригинальных чертежах Rolls-Royce)

Она отличается от системы трубчатой камеры тем, что не имеет индивидуальных воздушных корпусов для каждой жаровой трубы. В результате получается более компактное по размерам устройство, заключающее в общем воздушном корпусе несколько жаровых труб. Данная иллюстрация является одной из нескольких, на ней показан воспламенитель.

 

4.12. КОНСТРУКЦИЯ КОЛЬЦЕВОЙ КАМЕРЫ СГОРАНИЯ

Конструкция кольцевой камеры сгорания имеет только одну жаровую трубу, окруженную внешним и внутренним воздушными корпусами. Типичный пример такой камеры приведен на рис.4.5 и 4.5а.

Рис. 4.5. Кольцевая камера сгорания (основано на оригинальных чертежах Rolls-Royce)

Рис. 4.5а. Детализированное изображение кольцевой камеры сгорания (основано на оригинальных чертежах Rolls-Royce)

Система кольцевой камеры сгорания имеет несколько преимуществ над двумя остальными описанными ранее типами камер, из которых она и была создана:

a) Для той же выходной мощности длина кольцевой камеры составляет только 75% от длины трубчато-кольцевой камеры такого же диаметра.

b) Отсутствуют проблемы с распространением пламени.

c) По сравнению с трубчато-кольцевой системой площадь воздушного корпуса меньше, соответственно, требуется меньше охлаждающегося воздуха.

d) Эффективность сгорания увеличена до точки, где несгоревшее топливо фактически отсутствует, происходит окисление оксида углерода до нетоксичного диоксида углерода.

e) Происходит намного лучшее распределение давления газов, проходящих в турбину, поэтому передаваемая нагрузка более равномерная.

 

4.13. СООТНОШЕНИЕ ВОЗДУХ/ТОПЛИВО (СТЕХИОМЕТРИЧЕСКОЕ ОТНОШЕНИЕ)

Чтобы получить максимальную теплоотдачу, как указано в параграфе 4.1, нужно использовать химически правильное соотношение воздух/топливо 15:1. Если у поршневого двигателя такое соотношение может вызвать детонацию и нарушение работы, у ГТД таких про







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.