Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Векторы. Линейные операции над векторами





Элементы векторной алгебры

Лекция 1

Векторы. Линейные операции над векторами

Понятие вектора

 

 

Направленным отрезком называется отрезок, у которого указаны начало и конец. Обозначение:

Вектором называется направленный отрезок. Обозначение: (рис. 1).

А
   
D
C
Рис. 1

 


Вектор называется нулевым, если его начало и конец совпадают. Обозначение: .

Векторы и называются сонаправленными (противоположно направленными), если лучи [AB) и [CD) сонаправлены (противоположно направлены). Обозначение: ().

На рис. 2 , .

А
В
С
D
K
M
X
Y
Рис. 2

 


Векторы и называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Обозначение: || .

Нулевой вектор считается коллинеарным любому вектору.

Векторы и называются компланарными, если существует плоскость, которой они параллельны.

Длиной вектора называется расстояние между его началом и концом. Обозначение длины вектора : .

Длина нулевого вектора равна 0, т.е. .

Вектор называется единичным, если его длина равна единице.

В пространстве существует бесконечное множество единичных векторов.

Два вектора называются равными, если они сонаправлены и длины их равны. Обозначение: .

Два вектора называются противоположными, если они противоположно направлены и длины их равны.

Вектор, противоположный вектору , обозначается .

Откладыванием вектора от точки А называется процесс построения такой точки М, что .

В
Алгоритм этого процесса таков: пусть дан вектор и точка А. Сначала строят луч , исходящий из точки А и сонаправленный с вектором (рис. 3). Затем на луче откладывают с помощью циркуля отрезок АМ, длина которого равна длине вектора . Вектор - искомый, т.е. .

А
М
Рис. 3

 

 


Сложение и вычитание векторов

Линейными операциями над векторами называется сложение, вычитание векторов и умножение вектора на число.

Результатом сложения векторов является их сумма. Сумма векторов и обозначается .

Существует два правила сложения двух векторов: правило треугольника и правило параллелограмма.

Правило треугольника

Чтобы сложить векторы и , надо взять произвольную точку и от нее отложить последовательно сначала вектор , затем вектор . Вектор, начало которого совпадает с началом вектора (т.е. первого вектора), а конец – с концом вектора (т.е. второго вектора), есть искомая сумма. На рис. 4 .

 

М
В
Рис. 4

 


По правилу треугольника можно складывать любые векторы.

Коротко правило треугольника можно записать так:

для любых трех точек А,В и С .

Правило параллелограмма

Чтобы сложить векторы и , надо привести их к общему началу, т.е. взять произвольную точку А, построить такие точки В и С, что и , и достроить полученную фигуру до параллелограмма . Вектор - искомая сумма (рис. 5).

А
С
В
D
Рис. 5

 

 


По правилу параллелограмма можно складывать тольконеколлинеарные векторы.

Свойства сложения векторов:

10. .

20. .

30. .

40. .

Суммой трех векторов и называется вектор . Учитывая свойство 40, скобки можно опустить и обозначать сумму в виде .

Суммой n векторов называется вектор и обозначается так: .

При построении суммы n векторов пользуются правилом многоугольника.

Правило многоугольника

Чтобы найти сумму n векторов, надо взять произвольную точку и отложить от нее последовательно эти векторы. Вектор, начало которого совпадает с началом первого вектора, а конец – с концом последнего (n -го вектора), есть искомая сумма.

Разностью векторов и называется такой вектор , что . Разность – это результат вычитания векторов. Разность векторов и обозначается так: .

Правило построения разности двух векторов

Чтобы построить разность векторов и , надо привести их к общему началу. Тогда вектор, начало которого совпадает с концом второго вектора (т.е. вектора ), а конец – с концом первого (т.е. ), есть искомая разность .

Р
М
Рис. 6
На рис. 6 .

 

 

По правилу треугольника

,

откуда получаем краткую запись правила нахождения разности векторов:

.

Умножение вектора на число

Рассмотрим еще одну линейную операцию над векторами – умножение вектора на число. Результатом этой операции является произведение вектора на число.

Произведением вектора на действительное число a называется вектор , обозначаемый через и удовлетворяющий двум условиям:

1) его длина ;

2) если a 0, то ; если <0, то .

Алгоритм построения произведения вектора число a таков.

Берем произвольную точку М. Проводим луч , сонаправленный с вектором , если a 0, и противоположно направленный с вектором , если <0. На луче от начала М откладываем отрезок MP, длина которого в раз больше длины вектора . Вектор - искомый вектор .

Продемонстрируем этот алгоритм на конкретном примере. Построим вектор , если - данный вектор.

Возьмем произвольную точку А. Так как <0, то проводим луч (рис. 7). На луче строим такую точку С, что . Тогда - искомый вектор.

А
С
В
Рис. 7

 


Лекция 2

Примеры

1. Система векторов линейно зависима, т.к. если возьмем , то получим, что , т.е. существуют такие действительные числа , не все равные 0 одновременно (), что выполняется равенство .

2. Система двух неколлинеарных векторов и линейно независима, т.к. сумма двух неколлинеарных векторов и равна нулевому вектору только при .

Лекция 3

Базис. Координаты вектора

И их свойства

 

Множество всех векторов, на котором введена операция сложения векторов, удовлетворяющая свойствам

10. ;

20. ;

30. ;

40. ,

и операция умножения вектора на число, удовлетворяющая свойствам

10. , ;

20. ;

30. ;

40. ,

называется векторным пространством и обозначается через V.

Базисом векторного пространства называется система векторов, заданных в определенном порядке, которая удовлетворяет условиям:

1) система линейно независима;

2) любой вектор пространства является линейной комбинацией данной системы векторов.

Число векторов базиса называется размерностью векторного пространства.

Выяснить, чему равна размерность векторного пространства V, позволяют следующие две теоремы, которые приведем без доказательства:

Теорема 1. Любая система трех некомпланарных векторов, взятых в определенном порядке, образует базис векторного пространства.

А может ли базис пространства V состоять меньше, чем из трех векторов? Больше, чем из трех векторов? Оказывается, нет, так как справедлива

Теорема 2. Любой базис векторного пространства V состоит из трех векторов.

Эти теоремы можно доказать, пользуясь теоремами о коллинеарных и компланарных векторах и свойствами 20 - 70 линейно зависимой системы векторов.

Из теорем 1 и 2 следует, что размерность векторного пространства V равна 3, поэтому оно называется трехмерным векторным пространством.

Базис, состоящий из векторов , и , обозначается так: , , или , , . Векторы , , называются базисными векторами: - первый базисный вектор, - второй, - третий.

Пусть - произвольный вектор пространства V, , , - базис векторного пространства V.

Из теоремы 1 следует, что вектор можно разложить по базисным векторам , , , т.е. существуют такие действительные числа , , , что

.

Коэффициенты , , в этом разложении называются координатами вектора в базисе , , : - первая координата, - вторая, - третья.

Обозначают это так: (; ; ) , , .

Когда ясно, о каком базисе идет речь, пишут так: (; ; ).

Свойства координат векторов

10. Нулевой вектор в любом базисе имеет нулевые координаты: (0;0;0).

□ Разложим по векторам базиса , , :

.

Следовательно, (0;0;0) , , . ■

20. Если , , - базис пространства V, то (1;0;0), (0;1;0), (0;0;1).

(1;0;0);

(0;1;0);

(0;0;1). ■

30. Если (; ; ), в базисе , , , а , то

в базисе , , (координаты линейной комбинации векторов равны линейным комбинациям их соответствующих координат).

□ По определению координат вектора

, .

Тогда , .

Сложим почленно эти равенства и воспользуемся свойствами сложения векторов и умножения вектора на число:

.

По определению координат вектора

. ■

Из свойства 30 получаем следствия:

Следствие 1. Каждая координата суммы (разности) двух векторов равна сумме (разности) соответствующих координат этих векторов.

Следствие 2. При умножении вектора на число каждая его координата умножается на это число.

□ Чтобы доказать справедливость следствия 1, надо в свойстве 30 взять сначала a=b=1, а затем a=1, b=-1. Для доказательства следствия 2 полагаем b=0. ■

40. Векторы равны тогда и только тогда, когда равны их соответствующие координаты: , , .

50. Пусть (; ; ), , и , i=1, 2, 3. Векторы и коллинеарны тогда и только тогда, когда их соответствующие координаты пропорциональны:

|| .

Пусть . Тогда

|| и .

Если же , то

|| , а и - любые.

Частным случаем произвольного базиса является ортонормированный базис. Его удобно использовать при решении метрических задач (т.е. задач, связанных с вычислением длин отрезков (векторов) и величин углов).

Е1
Е3
О
Базис , , называется ортонормированным, если его векторы удовлетворяют двум условиям:

1) ;

Рис. 8
Е2
2) если , , (рис. 8), то углы , и - прямые.

 

Замечание. Множество всех векторов, параллельных данной плоскости (или лежащих в ней), образует двумерное векторное пространство, т.к. любой его базис состоит из двух неколлинеарных векторов. Поэтому любой вектор этого пространства в таком базисе имеет две, а не три координаты: . Ортонормированный базис выглядит так: , (рис. 9).

 

h DQKbjKEcmF6ADdsXWH5IcAFnQYsJZte0LTeM7sm2jQ2o0rWxsRnuIFNILc2ejdnWgaWgIaMXNInM fjgyOcLLbO5gi2gr+tfZ2iF9YXMHN4Jq27ZvKqMpvt3mdn63K64YPcS2OHnDbuP7a3zndou1qkq6 6OXIwZdzX7gau0bnG8SmnwxQ0al/3oC/STCvYWz+COPkPwAAAP//AwBQSwMEFAAGAAgAAAAhAEhm RzfgAAAACQEAAA8AAABkcnMvZG93bnJldi54bWxMj01Lw0AQhu+C/2EZwZvdfNBYYjalFPVUBFtB eptmp0lodjZkt0n6711Pehye4X2ft1jPphMjDa61rCBeRCCIK6tbrhV8Hd6eViCcR9bYWSYFN3Kw Lu/vCsy1nfiTxr2vRQhhl6OCxvs+l9JVDRl0C9sTB3a2g0EfzqGWesAphJtOJlGUSYMth4YGe9o2 VF32V6PgfcJpk8av4+5y3t6Oh+XH9y4mpR4f5s0LCE+z/3uGX/2gDmVwOtkrayc6BWkWhS0+gBhE 4FmSJiBOCpJ0+QyyLOT/BeUPAAAA//8DAFBLAQItABQABgAIAAAAIQC2gziS/gAAAOEBAAATAAAA AAAAAAAAAAAAAAAAAABbQ29udGVudF9UeXBlc10ueG1sUEsBAi0AFAAGAAgAAAAhADj9If/WAAAA lAEAAAsAAAAAAAAAAAAAAAAALwEAAF9yZWxzLy5yZWxzUEsBAi0AFAAGAAgAAAAhAJmeYV9+BgAA zCEAAA4AAAAAAAAAAAAAAAAALgIAAGRycy9lMm9Eb2MueG1sUEsBAi0AFAAGAAgAAAAhAEhmRzfg AAAACQEAAA8AAAAAAAAAAAAAAAAA2AgAAGRycy9kb3ducmV2LnhtbFBLBQYAAAAABAAEAPMAAADl CQAAAAA= ">

Рис. 9

 

 

Лекция 4

Геометрические свойства

Алгебраические свойства

Лекция 5

Геометрические свойства

Алгебраические свойства

Лекция 6

Геометрические свойства

Алгебраические свойства

Трех векторов

Смешанное произведение векторов применяется:

1. Для выяснения компланарности трех векторов:

векторы , , компланарны тогда и только тогда, когда .

2. Для вычисления объема параллелепипеда: (рис. 27).

 

Рис. 27
Рис. 28
А1
D1
С1
В1
D
С
В
А
А1
В1
С1
А
В
С
Рис. 29
D
А
В
С

 

 


3. Для вычисления объема треугольной призмы:

(рис. 28).

4. Для вычисления объема тетраэдра (треугольной пирамиды):

(рис. 29).

Метод координат

Лекция 7

Системы координат

Систем координат

О
Рис. 30
О
х
у
z
Рис. 31
Четверка, состоящая из точки О и базиса , , в пространстве, называется аффинной системой координат в пространстве и обозначается или (рис. 30).

Точка О называется началом координат, векторы , , - координатными векторами: - первый координатный вектор, - второй, - третий.

Направленные прямые, на которых положительное направление определяется базисными векторами и которые проходят через точку О, называются координатными осями:

- ось абсцисс;

- ось ординат;

- ось аппликат (рис. 31).

Оси абсцисс, ординат и аппликат обозначаются и так: Ох, Оу, Оz.

Плоскости, определяемые осями Ох и Оу, Оу и Оz, Ох и Оz, называются координатными плоскостями и обозначаются Оху, Оуz, Oxz, а систему координат иногда обозначают Oxyz.

Рис. 32
О
М
Пусть - аффинная система координат, М – произвольная точка пространства. Вектор называется радиус-вектором точки М относительно точки О (рис. 32).

Понятие координат точки вводится на основе понятия координат вектора.

Координатами точки М в системе координат называются координаты ее радиус-вектора в базисе , , .

Обозначение или просто М(х;у;z): хабсцисса точки М, уордината, zаппликата.

Если в пространстве задана аффинная система координат, то устанавливается взаимно однозначное соответствие между точками пространства и упорядоченными тройками (х;у;z) действительных чисел.

Рассмотрим особенности расположения точки относительно аффинной системы координат, если некоторые ее координаты являются нулевыми. Пусть М(х;у;z).

1) Если z =0, то М(х;у;0) Þ Þ . Верно и обратное: Þ z =0.

2) Докажите самостоятельно, что если у=0, то , и наоборот, если , то у=0.

3) Докажите самостоятельно, что если х=0, то , и наоборот, если , то х=0.

4) Если z =0 и у=0, то и Þ Þ . Верно и обратное: Þ z =0 и у=0.

Докажите самостоятельно, что:

5) Если х =0 и у=0, то и наоборот, если , то х =0 и у=0.

6) Если х =0 и z =0, то и наоборот, если , то х =0 и z =0.

7) Так как , то из пунктов 1) – 3) следует, что О (0;0;0) в системе координат .

Чтобы построить точку М(х;у;z) по ее координатам в системе координат , надо сначала построить точку М1 (х;0;0), затем точку М2 (х;у;0), а затем точку М (х;у;z). Процесс построения этих точек показан на рис. 33. Ломаная ОМ1М2М называется координатной ломаной точки М.

М1
М
М2
О
Рис. 33
Система координат называется прямоугольной декартовой, если ее базис является ортонормированным. Обозначение прямоугольной декартовой системы координат: или , где

, , и .

Прямоугольная декартова система координат является частным случаем аффинной.

Замечание. На плоскости аффинная система координат состоит из точки О (начала координат) и двух базисных векторов и (координатных векторов) (рис. 34). Поэтому в системе координат на плоскости любая точка имеет две координаты . Прямоугольная декартова система координат на плоскости изображена на рис. 35.

О
О
Рис. 34
Рис. 35

 

 


Основные аффинные задачи

1. Координаты вектора, заданного двумя точками.

Теорема 1. Если в аффинной системе координат и , то .

Представим вектор в виде разности векторов и :

.

Так как , то по определению координат точки . Аналогично . Применяя свойство координат векторов (координаты разности двух векторов равны разности их соответствующих координат), получаем, что вектор Прокрутить вверх





Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.