Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







ЭЛТ с апертурной решеткой из вертикальных линий(Aperture Grill)





Виды координатных устройств

  • мышь (манипулятор);
  • джойстик;
  • сенсорный экран;

Манипуля́тор «мышь» (просто «мышь» или «мышка») — механический манипулятор, преобразующий механические движения в движение курсора на экране.

Мышь воспринимает своё перемещение в рабочей плоскости (обычно — на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В универсальных интерфейсах (например, в оконных) с помощью мыши пользователь управляет специальным курсором — указателем — манипулятором элементами интерфейса. Иногда используется ввод команд мышью без участия видимых элементов интерфейса программы: при помощи анализа движений мыши. Такой способ получил название «жесты мышью»

Джо́йстик (англ. joystick — «ручка управления самолётом», дословно «палочка веселья») — устройство ввода информации, которое представляет собой качающуюся в двух плоскостях ручку. Наклоняя ручку вперёд, назад, влево и вправо, пользователь может передвигать что-либо по экрану. На ручке, а также в платформе, на которой она крепится, обычно располагаются кнопки и переключатели различного назначения. Помимо координатных осей X и Y, возможно также изменение координаты Z, за счет вращения рукояти вокруг оси, наличия второй ручки, дополнительного колёсика и т. п.

 

16.Устройство 3D позиционирования

Устройства позиционирования – это аналог манипулятора в настольном ПК, присутствующий в ноутбуках. Устройство позиционирования выполняет ту же функцию, что и мышка в настольном ПК. Различают два основных вида устройств позиционирования: Touchpad и PointStick.

Это распознавание видео. Это камера, которая видит, что происходит вокруг.

3D манипулятор представляет собой устройство трехмерного позиционирования с шариком или джойстиком (6 степеней свободы) для работы в системах трехмерного проектирования или в приложениях, которые требуют контроля перемещения чего-либо в виртуальном пространстве (например, Google Earth). Устройство имеет также перепрограммируемые кнопки, которым можно назначить запуск различных команд приложения и, возможно, ккнопки-"модификаторы" (Ctrl, Alt, Shift, Esc). Согласно исследованиям, скорость работы конструкторов при трехмерном моделировании увеличивается, даже если просто использовать 3D манипулятор "неведущей" рукой, не трогая его кнопок.

 

17. Мониторы на электронно - лучевых трубках

Электронно-лучевая трубка, или кинескоп, — самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум. Один из концов колбы узкий и длинный — это горловина. Другой — широкий и достаточно плоский — экран. Внутренняя стеклянная поверхность экрана покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов — иттрия, эрбия и т. п. Люминофор — это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P2O5, и ссвечение длится очень недолго (кстати, белый фосфор — сильный яд).

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.

В зависимости от расположения электронных пушек и конструкции цветоделительной маски различают ЭЛТ четырех типов, используемые в современных мониторах:

ЭЛТ с теневой маской (Shadow Mask) наиболее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia. Теневая маска (shadow mask) — самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) — магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рисунке ниже, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.

Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно.

ЭЛТ со щелевой маской

Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.

Оба типа масок — теневая маска и апертурная решетка — имеют свои преимущества и своих сторонников. Для офисных приложений, текстовых редакторов и электронных таблиц больше подходят кинескопы с теневой маской, обеспечивающие очень высокую четкость и достаточный контраст изображения. Для работы с пакетами растровой и векторной графики традиционно рекомендуются трубки с апертурной решеткой, которым свойственны превосходная яркость и контрастность изображения.

 

18.ЖК – мониторы

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД, англ. Liquid crystal display, LCD), также жидкокристаллический монитор (ЖК-монитор) — плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

Важнейшие характеристики ЖК-дисплеев:

  • Разрешение — горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.
  • Размер точки (размер пикселя) — расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (пропорциональный формат) — отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.)
  • Видимая диагональ — размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность — отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость — количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика — минимальное время, необходимое пикселю для изменения своей яркости. Составляется из двух величин:
    • Время буферизации (input lag). Высокое значение мешает в динамичных играх; обычно умалчивается; измеряется сравнением с кинескопом в скоростной съёмке. Сейчас (2011) в пределах 20—50 мс; в отдельных ранних моделях достигало 200 мс.
    • Время переключения — именно оно указывается в характеристиках монитора. Высокое значение ухудшает качество видео; методы измерения неоднозначны. Сейчас практически во всех мониторах заявленное время переключения составляет 2—6 мс.
  • Угол обзора — угол, при котором падение контраста достигает заданного, для разных типов матриц и разными производителями вычисляется по-разному, и часто не подлежит сравнению. Некоторые производители указывают в тех. параметрах своих мониторов углы обзора такие к примеру как: CR 5:1 — 176°/176°, CR 10:1 — 170°/160°. Аббревиатура CR (contrast ratio) обозначает уровень контрастности при указанных углах обзора относительно перпендикуляра к экрану. При углах обзора 170°/160° контрастность в центре экрана снижается до значения не ниже чем 10:1, при углах обзора 176°/176° не ниже чем до значения 5:1.
  • Тип матрицы — технология, по которой изготовлен ЖК-дисплей.

В настоящее время ЖК-мониторы являются основным, бурно развивающимся направлением в технологии мониторов. К их преимуществам можно отнести: малые размер и масса в сравнении с ЭЛТ. У ЖК-мониторов, в отличие от ЭЛТ, нет видимого мерцания, дефектов фокусировки лучей, помех от магнитных полей, проблем с геометрией изображения и четкостью.

 

 

20. Сканеры

Сканер – это устройство, которое анализируя какой-либо объект (обычно изображение, текст), создаёт цифровую копию изображения объекта. Процесс получения этой копии называется сканированием.

Оптическое разрешение

Является основной характеристикой сканера. Сканер снимает изображение не целиком, а по строчкам. По вертикали планшетного сканера движется полоска светочувствительных элементов и снимает по точкам изображение строку за строкой. Чем больше светочувствительных элементов у сканера, тем больше точек он может снять с каждой горизонтальной полосы изображения. Это и называется оптическим разрешением. Оно определяется количеством светочувствительных элементов (фотодатчиков), приходящихся на дюйм горизонтали сканируемого изображения. Обычно его считают по количеству точек на дюйм - dpi (dots per inch). Нормальный уровень разрешение не менее 600 dpi, увеличивать его еще дальше - значит, применять дорогую оптику, дорогие светочувствительные элементы, и увеличивать время сканирования. Для обработки слайдов необходимо более высокое разрешение 1200 dpi.

Разрешение по X

Этот параметр показывает количество пикселей у фоточувствительной линейки, из которых формируется изображение. Разрешение является одной из основных характеристик сканера. Большинство моделей имеет оптическое разрешение сканера 600 или 1200 dpi (точек на дюйм). Его достаточно для получения качественной копии. Для профессиональной работы с изображением необходимо более высокое разрешение.

Разрешение по Y

Этот параметр определяется величиной хода шагового двигателя и точностью работы механики. Механическое разрешение сканера значительно выше оптического разрешения фотолинейки. Именно оптическое разрешение линейки фотоэлементов будет определять общее качество отсканированного изображения.

Скорость сканирования

Скорость сканирования зависит от разрешения при сканировании и от размера оригинала. Обычно производители указывают этот параметр для формата А4. Скорость сканирования может измеряться количеством страниц в минуту или временем, необходимым для сканирования одной страницы. Иногда измеряется в количестве сканируемых линий в секунду.

Глубина цвета

Как правило, производители указывают два значения для глубины цвета - внутреннюю глубину и внешнюю. Внутренняя глубина - это разрядность АЦП (аналого-цифрового преобразователя) сканера, она указывает на то, сколько цветов сканер способен различить в принципе. Внешняя глубина - это количество цветов, которое сканер может передать компьютеру. Большинство моделей используют для цветопередачи 24 бита (по 8 на каждый цвет). Для стандартных задач в офисе и дома этого вполне достаточно. Но если вы собираетесь использовать сканер, для серьезной работы с графикой, попробуйте найти модель с большим числом разрядов.

Тип источника света

Ксеноновые лампы отличаются малым временем прогрева, долгим сроком службы и небольшими размерами. Флуоресцентные лампы с холодным катодом дешевы в производстве и имеют долгий срок службы. Светодиоды (LED) обладают малыми размерами, низким энергопотреблением и не требуют времени для прогрева. Но по качеству цветопередачи LED-сканеры уступают сканерам с флуоресцентными и ксеноновыми лампами.

Тип датчика сканера

В сканерах МФУ обычно используется один из двух типов датчиков: контактный (CIS) или ПЗС (CCD). CIS представляет собой линейку фотоэлементов, которая равна ширине сканируемой поверхности. Во время сканирования она перемещается под стеклом и строка за строкой передает информацию об изображении на оригинале в виде электрического сигнала. Для освещения обычно используются светодиоды, которые расположены в непосредственной близости от фотолинейки на той же подвижной платформе. Сканеры на базе CIS имеют простую конструкцию, тонкий корпус и небольшой вес, они обычно дешевле сканеров на базе CCD. Основной недостаток CIS состоит в малой глубине резкости.

Виды сканеров

  • планшетные — наиболее распространённый вид сканеров, поскольку обеспечивает максимальное удобство для пользователя — высокое качество и приемлемую скорость сканирования. Представляет собой планшет, внутри которого под прозрачным стеклом расположен механизм сканирования.
  • ручные — в них отсутствует двигатель, следовательно, объект приходится сканировать пользователю вручную, единственным его плюсом является дешевизна и мобильность, при этом он имеет массу недостатков — низкое разрешение, малую скорость работы, узкая полоса сканирования, возможны перекосы изображения, поскольку пользователю будет трудно перемещать сканер с постоянной скоростью.
  • листопротяжные — лист бумаги вставляется в щель и протягивается по направляющим роликам внутри сканера мимо лампы. Имеет меньшие размеры, по сравнению с планшетным, однако может сканировать только отдельные листы, что ограничивает его применение в основном офисами компаний. Многие модели имеют устройство автоматической подачи, что позволяет быстро сканировать большое количество документов.
  • планетарные сканеры — применяются для сканирования книг или легко повреждающихся документов. При сканировании нет контакта со сканируемым объектом (как в планшетных сканерах). Подробности на английском языке http://en.wikipedia.org/wiki/Planetary_scanner
  • книжные сканеры - предназначены для сканирования брошюрованных документов. Сканирование производится лицевой стороной вверх - таким образом, Ваши действия по сканированию неотличимы от перелистывания страниц при обычном чтении. Это предотвращает их повреждение и позволяет пользователю видеть документ в процессе сканирования.
  • слайд-сканеры — как ясно из названия, служат для сканирования плёночных слайдов, выпускаются как самостоятельные устройства, так и в виде дополнительных модулей к обычным сканерам.
  • сканеры штрих-кода — небольшие, компактные модели для сканирования штрих-кодов товара в магазинах.

 

22.Лазерные устройства печати

Ла́зерный при́нтер (laser printer) — один из видов принтеров, позволяющий быстро изготавливать высококачественные отпечатки текста и графики на обыкновенной бумаге. Подобно фотокопировальным аппаратам лазерные принтеры используют в работе процесс ксерографической печати, однако отличие состоит в том, что формирование изображения происходит путём непосредственного сканирования лазерным лучом фоточувствительных элементов принтера.

Отпечатки, сделанные таким способом, не боятся влаги, устойчивы к истиранию и выцветанию. Качество такого изображения очень высокое.

Аддитивные цветовые модели

Аддитивный цвет получается путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета называются первичными, являются красный (Red), зеленый (Green) и синий (Blue). При попарном смешивании первичных цветов образуются вторичные цвета: голубой (Cyan), пурпурный (Magenta) и желтый (Yellow).

Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух основных цветов, варьирование состава которых приводит к изменению результирующего цвета.

В графических пакетах цветовая модель RGB используется для создания цветов изображения на экране монитора, основными элементами которого являются три электронных прожектора и экран с нанесенными на него тремя разными люминофорами, имеющими различные спектральные характеристики. Один люминофор под действием падающего на него электронного луча излучает красный цвет, другой – зеленый, третий – синий.

Векторные форматы

Файлы векторного формата содержат описания рисунков в виде набора команд для построения простейших графических объектов (линий, окружностей, прямоугольников, дуг и т. д.). Кроме того, в этих файлах хранится некоторая дополнительная информация. Различные векторные форматы отличаются набором команд и способом их кодирования.

Растровые форматы

В файлах растровых форматов запоминаются:

• размер изображения — количество видеопикселей в рисунке по горизонтали и вертикали

• битовая глубина — число битов, используемых для хранения цвета одного видеопикселя

• данные, описывающие рисунок (цвет каждого видеопикселя рисунка), а также некоторая дополнительная информация.

В файлах растровой графики разных форматов эти характеристики хранятся различными способами.

Поскольку размер изображения хранится в виде отдельной записи, цвета всех видеопикселей рисунка запоминаются как один большой блок данных. Так как растровое представление изображения кораблика достаточно громоздко, рассмотрим как сохраняется в растровом файле простое чёрно-белое изображение (рис. 2).

Рис. 2. В растровом файле сохраняется информация о цвете каждого видеопикселя

На рис. 3 показан результат восстановления изображения по информации, сохранённой в растровом файле, представленном на рис. 2. В изображении, восстановленном по файлу, видеопиксели располагаются согласно размеру изображения; а именно, сначала — первая десятка видеопикселей, в следующей строке — вторая десятка и т. д., в десятой строке — последние десять видеопикселей.

Рис. 3. Растровый рисунок, восстановленный по файлу растровой графики

 

 

32.Алгоритмы JPEG

Алгоритм разработан группой экспертов в области фотографии специально для сжатия 24-битных изображений. JPEG — Joint Photographic Expert Group — подразделение в рамках ISO — Международной организации по стандартизации. Название алгоритма читается ['jei'peg]. В целом алгоритм основан на дискретном косинусоидальном преобразовании (в дальнейшем ДКП), применяемом к матрице изображения для получения некоторой новой матрицы коэффициентов. Для получения исходного изображения применяется обратное преобразование.

ДКП раскладывает изображение по амплитудам некоторых частот. Таким образом, при преобразовании мы получаем матрицу, в которой многие коэффициенты либо близки, либо равны нулю. Кроме того, благодаря несовершенству человеческого зрения, можно аппроксимировать коэффициенты более грубо без заметной потери качества изображения.

Для этого используется квантование коэффициентов (quantization). В самом простом случае — это арифметический побитовый сдвиг вправо. При этом преобразовании теряется часть информации, но могут достигаться большие коэффициенты сжатия.

Итак, рассмотрим алгоритм подробнее. Пусть мы сжимаем 24-битное изображение.

· Шаг 1.

· Переводим изображение из цветового пространства RGB, с компонентами, отвечающими за красную (Red), зеленую (Green) и синюю (Blue) составляющие цвета точки, в цветовое пространство YCrCb (иногда называют YUV).

· В нем Y — яркостная составляющая, а Cr, Cb — компоненты, отвечающие за цвет (хроматический красный и хроматический синий). За счет того, что человеческий глаз менее чувствителен к цвету, чем к яркости, появляется возможность архивировать массивы для Cr и Cb компонент с большими потерями и, соответственно, большими коэффициентами сжатия. Подобное преобразование уже давно используется в телевидении. На сигналы, отвечающие за цвет, там выделяется более узкая полоса частот.

· Упрощенно перевод из цветового пространства RGB в цветовое пространство YCrCb можно представить с помощью матрицы перехода:

· Обратное преобразование осуществляется умножением вектора YUV на обратную матрицу.

· Шаг 2.

· Разбиваем исходное изображение на матрицы 8х8. Формируем из каждой три рабочие матрицы ДКП — по 8 бит отдельно для каждой компоненты. При больших коэффициентах сжатия этот шаг может выполняться чуть сложнее. Изображение делится по компоненте Y — как и в первом случае, а для компонент Cr и Cb матрицы набираются через строчку и через столбец. Т.е. из исходной матрицы размером 16x16 получается только одна рабочая матрица ДКП. При этом, как нетрудно заметить, мы теряем 3/4 полезной информации о цветовых составляющих изображения и получаем сразу сжатие в два раза. Мы можем поступать так благодаря работе в пространстве YCrCb. На результирующем RGB изображении, как показала практика, это сказывается несильно.

· Шаг 3.

· Применяем ДКП к каждой рабочей матрице. При этом мы получаем матрицу, в которой коэффициенты в левом верхнем углу соответствуют низкочастотной составляющей изображения, а в правом нижнем — высокочастотной.

· В упрощенном виде это преобразование можно представить так:

· Шаг 4.

· Производим квантование. В принципе, это просто деление рабочей матрицы на матрицу квантования поэлементно. Для каждой компоненты (Y, U и V), в общем случае, задается своя матрица квантования q[u,v] (далее МК).

· На этом шаге осуществляется управление степенью сжатия, и происходят самые большие потери. Понятно, что, задавая МК с большими коэффициентами, мы получим больше нулей и, следовательно, большую степень сжатия.

· В стандарт JPEG включены рекомендованные МК, построенные опытным путем. Матрицы для большего или меньшего коэффициентов сжатия получают путем умножения исходной матрицы на некоторое число gamma.

· С квантованием связаны и специфические эффекты алгоритма. При больших значениях коэффициента gamma потери в низких частотах могут быть настолько велики, что изображение распадется на квадраты 8х8. Потери в высоких частотах могут проявиться в так называемом “эффекте Гиббса”, когда вокруг контуров с резким переходом цвета образуется своеобразный “нимб”.

· Шаг 5.

· Переводим матрицу 8x8 в 64-элементный вектор при помощи “зигзаг”-сканирования, т.е. берем элементы с индексами (0,0), (0,1), (1,0), (2,0)...

· Таким образом, в начале вектора мы получаем коэффициенты матрицы, соответствующие низким частотам, а в конце — высоким.

· Шаг 6.

· Свертываем вектор с помощью алгоритма группового кодирования. При этом получаем пары типа (пропустить, число), где “пропустить” является счетчиком пропускаемых нулей, а “число” — значение, которое необходимо поставить в следующую ячейку. Так, вектор 42 3 0 0 0 -2 0 0 0 0 1... будет свернут в пары (0,42) (0,3) (3,-2) (4,1)....

· >Шаг 7.

· Свертываем получившиеся пары кодированием по Хаффману с фиксированной таблицей.

· Процесс восстановления изображения в этом алгоритме полностью симметричен. Метод позволяет сжимать некоторые изображения в 10-15 раз без серьезных потерь.

 

Виды координатных устройств

  • мышь (манипулятор);
  • джойстик;
  • сенсорный экран;

Манипуля́тор «мышь» (просто «мышь» или «мышка») — механический манипулятор, преобразующий механические движения в движение курсора на экране.

Мышь воспринимает своё перемещение в рабочей плоскости (обычно — на участке поверхности стола) и передаёт эту информацию компьютеру. Программа, работающая на компьютере, в ответ на перемещение мыши производит на экране действие, отвечающее направлению и расстоянию этого перемещения. В универсальных интерфейсах (например, в оконных) с помощью мыши пользователь управляет специальным курсором — указателем — манипулятором элементами интерфейса. Иногда используется ввод команд мышью без участия видимых элементов интерфейса программы: при помощи анализа движений мыши. Такой способ получил название «жесты мышью»

Джо́йстик (англ. joystick — «ручка управления самолётом», дословно «палочка веселья») — устройство ввода информации, которое представляет собой качающуюся в двух плоскостях ручку. Наклоняя ручку вперёд, назад, влево и вправо, пользователь может передвигать что-либо по экрану. На ручке, а также в платформе, на которой она крепится, обычно располагаются кнопки и переключатели различного назначения. Помимо координатных осей X и Y, возможно также изменение координаты Z, за счет вращения рукояти вокруг оси, наличия второй ручки, дополнительного колёсика и т. п.

 

16.Устройство 3D позиционирования

Устройства позиционирования – это аналог манипулятора в настольном ПК, присутствующий в ноутбуках. Устройство позиционирования выполняет ту же функцию, что и мышка в настольном ПК. Различают два основных вида устройств позиционирования: Touchpad и PointStick.

Это распознавание видео. Это камера, которая видит, что происходит вокруг.

3D манипулятор представляет собой устройство трехмерного позиционирования с шариком или джойстиком (6 степеней свободы) для работы в системах трехмерного проектирования или в приложениях, которые требуют контроля перемещения чего-либо в виртуальном пространстве (например, Google Earth). Устройство имеет также перепрограммируемые кнопки, которым можно назначить запуск различных команд приложения и, возможно, ккнопки-"модификаторы" (Ctrl, Alt, Shift, Esc). Согласно исследованиям, скорость работы конструкторов при трехмерном моделировании увеличивается, даже если просто использовать 3D манипулятор "неведущей" рукой, не трогая его кнопок.

 

17. Мониторы на электронно - лучевых трубках

Электронно-лучевая трубка, или кинескоп, — самый важный элемент монитора. Кинескоп состоит из герметичной стеклянной колбы, внутри которой находится вакуум. Один из концов колбы узкий и длинный — это горловина. Другой — широкий и достаточно плоский — экран. Внутренняя стеклянная поверхность экрана покрыта люминофором (luminophor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов — иттрия, эрбия и т. п. Люминофор — это вещество, которое при бомбардировке заряженными частицами испускает свет. Заметим, что иногда люминофор называют фосфором, но это не верно, так как люминофор, используемый в покрытии ЭЛТ, не имеет ничего общего с фосфором. Более того, фосфор светится только в результате взаимодействия с кислородом воздуха при окислении до P2O5, и ссвечение длится очень недолго (кстати, белый фосфор — сильный яд).

Для создания изображения в ЭЛТ-мониторе используется электронная пушка, откуда под действием сильного электростатического поля исходит поток электронов. Сквозь металлическую маску или решетку они попадают на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов (луч) может отклоняться в вертикальной и горизонтальной плоскости, что обеспечивает последовательное попадание его на все поле экрана. Отклонение луча происходит посредством отклоняющей системы. Отклоняющие системы подразделяются на седловидно-тороидальные и седловидные. Последние предпочтительнее, поскольку итмеют пониженный уровень излучения.

В зависимости от расположения электронных пушек и конструкции цветоделительной маски различают ЭЛТ четырех типов, используемые в современных мониторах:

ЭЛТ с теневой маской (Shadow Mask) наиболее распространены в большинстве мониторов, производимых LG, Samsung, Viewsonic, Hitachi, Belinea, Panasonic, Daewoo, Nokia. Теневая маска (shadow mask) — самый распространенный тип масок. Она применяется со времени изобретения первых цветных кинескопов. Поверхность у кинескопов с теневой маской обычно сферической формы (выпуклая). Это сделано для того, чтобы электронный луч в центре экрана и по краям имел одинаковую толщину.

Теневая маска состоит из металлической пластины с круглыми отверстиями, которые занимают примерно 25% площади. Находится маска перед стеклянной трубкой с люминофорным слоем. Как правило, большинство современных теневых масок изготавливают из инвара. Инвар (InVar) — магнитный сплав железа (64%) с никелем (36%). Этот материал имеет предельно низкий коэффициэнт теплового расширения, поэтому, несмотря на то, что электронные лучи нагревают маску, она не оказывает отрицательного влияния на чистоту цвета изображения. Отверстия в металлической сетке работают как прицел (хотя и не точный), именно этим обеспечивается то, что электронный луч попадает только на требуемые люминофорные элементы и только в определенных областях. Теневая маска создает решетку с однородными точками (еще называемыми триады), где каждая такая точка состоит из трех люминофорных элементов основных цветов — зеленного, красного и синего, которые светятся с различной интенсивностью под воздействием лучей из электронных пушек. Изменением тока каждого из трех электронных лучей можно добиться произвольного цвета элемента изображения, образуемого триадой точек.

Одним из слабых мест мониторов с теневой маской является ее термическая деформация. На рисунке ниже, как часть лучей от электронно-лучевой пушки попадает на теневую маску, вследствие чего происходит нагрев и последующая деформация теневой маски. Происходящее смещение отверстий теневой маски приводит к возникновению эффекта пестроты экрана (смещения цветов RGB). Существенное влияние на качество монитора оказывает материал теневой маски. Предпочтительным материалом маски является инвар.

Недостатки теневой маски хорошо известны: во-первых, это малое соотношение пропускаемых и задерживаемых маской электронов (только около 20-30% проходит через маску), что требует применения люминофоров с большой светоотдачей, а это в свою очередь ухудшает монохромность свечения, уменьшая диапазон цветопередачи, а во-вторых, обеспечить точное совпадение трех не лежащих в одной плоскости лучей при отклонении их на большие углы довольно трудно.

ЭЛТ с апертурной решеткой из вертикальных линий(Aperture Grill)

Апертурная решетка — это тип маски, используемый разными производителями в своих технологиях для производства кинескопов, носящих разные названия, но одинаковые по сути, например, технология Trinitron от Sony, DiamondTron от Mitsubishi и SonicTron от ViewSonic. Это решение не включает в себя металлическую решетку с отверстиями, как в случае с теневой маской, а имеет решетку из вертикальных линий. Вместо точек с люминофорными элементами трех основных цветов, апертурная решетка содержит серию нитей, состоящих из люминофорных элементов выстроенных в виде вертикальных полос трех основных цветов. Такая система обеспечивает высокую контрастность изображения и хорошую насыщенность цветов, что вместе обеспечивает высокое качество мониторов с трубками на основе этой технологии.

ЭЛТ со щелевой маской

Это решение на практике представляет собой комбинацию теневой маски и апертурной решетки. В данном случае люминофорные элементы расположены в вертикальных эллиптических ячейках, а маска сделана из вертикальных линий. Фактически вертикальные полосы разделены на эллиптические ячейки, которые содержат группы из трех люминофорных элементов трех основных цветов.

Оба типа масок — теневая маска и апертурная решетка — имеют свои преимущества и своих сторонников. Для офисных приложений, текстовых редакторов и электронных таблиц больше подходят кинескопы с теневой маской, обеспечивающие очень высокую четкость и достаточный контраст изображения. Для работы с пакетами растровой и векторной графики традиционно рекомендуются трубки с апертурной решеткой, которым свойственны превосходная яркость и контрастность изображения.

 

18.ЖК – мониторы

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД, англ. Liquid crystal display, LCD), также жидкокристаллический монитор (ЖК-монитор) — плоский дисплей на основе жидких кристаллов, а также монитор на основе такого дисплея.

Важнейшие характеристики ЖК-дисплеев:

  • Разрешение — горизонтальный и вертикальный размеры, выраженные в пикселях. В отличие от ЭЛТ-мониторов, ЖК имеют одно фиксированное разрешение, остальные достигаются интерполяцией.
  • Размер точки (размер пикселя) — расстояние между центрами соседних пикселей. Непосредственно связан с физическим разрешением.
  • Соотношение сторон экрана (пропорциональный формат) — отношение ширины к высоте (5:4, 4:3, 3:2 (15÷10), 8:5 (16÷10), 5:3 (15÷9), 16:9 и др.)
  • Видимая диагональ — размер самой панели, измеренный по диагонали. Площадь дисплеев зависит также от формата: монитор с форматом 4:3 имеет большую площадь, чем с форматом 16:9 при одинаковой диагонали.
  • Контрастность — отношение яркостей самой светлой и самой тёмной точек при заданной яркости подсветки. В некоторых мониторах используется адаптивный уровень подсветки с использованием дополнительных ламп, приведённая для них цифра контрастности (так называемая динамическая) не относится к статическому изображению.
  • Яркость — количество света, излучаемое дисплеем, обычно измеряется в канделах на квадратный метр.
  • Время отклика — минимальное время, необходимое пикселю для изменения





    Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

    ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

    ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

    Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...





    Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.