Уравнение Шредингера (общие свойства)
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Уравнение Шредингера (общие свойства)





 

№1 Стационарное уравнение Шредингера имеет вид . Это уравнение записано для….

Решение.

Стационарное уравнение Шредингера в общем случае имеет вид

, где потенциальная энергия микрочастицы. Для одномерного случая . Кроме того, внутри потенциального ящика , а вне ящика частица находиться не может, т.к. его стенки бесконечно высоки. Поэтому данное уравнение Шредингера записано для частицы в одномерном ящике с бесконечно высокими стенками.

 

Линейного гармонического осциллятора

ü Частицы в одномерном потенциальном ящике с бесконечно высокими стенками

Частицы в трехмерном потенциальном ящике с бесконечно высокими стенками

Электрона в атоме водорода

№2

Установите соответствия между квантовомеханическими задачами и уравнениями Шредингера для них.

Решение:

Общий вид стационарного уравнения Шредингера имеет вид:

потенциальная энергия частицы,

оператор Лапласа. Для одновременного случая

.Выражение для потенциальной энергии гармонического осциллятора ,т.е частицы совершающей одномерное движение под действием квазиупругой силы имеет вид U= .

Значение потенциальной энергии электрона в потенциальном ящике с бесконечно высокими стенками U=0.Электрон в водородоподобном атоме обладаем потенциальной энергией Для атома водородаZ=1 .

Таким образом, для электрона в одномерном потенциальном ящике ур-ие Шредингера имеет вид:

№3

С помощью волновой функции ,являющейся решением уравнения Шредингера ,можно определить….

Варианты ответа: (Укажите не менее двух вариантов ответа)

 

Средние значения физических величин ,характеризующих частицу

Вероятность того,что частица находится в определенной области пространства



Траекторию частицы

Местонахождение частицы

 

Решение:

Величина имеет смысл плотности вероятности(вероятности,отнесенной к единице объема),т.е определяет вероятность пребывания частицы в соответствующем месте пространства.Тогда вероятность W обнаружения частицы в определенной области пространства равна

 

Уравнение Шредингера (конкретные ситуации)

 

№1Собственные функции электрона в одномерном потенциальном ящике с бесконечно высокими стенками имеют вид где ширина ящика, квантовое число, имеющее смысл номера энергетического уровня. Если число узлов функции на отрезке и , то равно…

Решение.

Число узлов , т.е. число точек, в которых волновая функция на отрезке обращается в нуль, связано с номером энергетического уровня соотношением . Тогда , и по условию это отношение равно 1,5. Решая полученное уравнение относительно , получаем, что

5

ü 4

2

6

Ядерные реакции.

№1В ядерной реакции буквой обозначена частица …

Решение.

Из законов сохранения массового числа и зарядового числа следует, что заряд частицы равен нулю, а массовое число равно 1. Следовательно, буквой обозначен нейтрон.

 

ü Нейтрон

Позитрон

Электрон

Протон

№2

На графике в полулогарифмическом масштабе показана зависимость изменения числа радиоактивных ядер изотопа от времени.Постоянная радиоактивного распада в равна …(ответ округлите до целых)

Решение:

Число радиоактивных ядер изменяется со временем по закону -начальное число ядер, -постоянная радиоактивного распада.Прологарифмировав это выражение,получим

ln .Следовательно, =0,07

Законы сохранения в ядерных реакциях.

 

№1

Реакция не может идти из-за нарушения закона сохранения …

Решение.

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии, импульса, момента импульса (спина) и всех зарядов (электрического , барионного и лептонного ). Эти законы сохранения не только ограничивают последствия различных взаимодействий, но определяют также все возможности этих последствий. Для выбора правильного ответа надо проверить, каким законом сохранения запрещена и какими разрешена приведенная реакция взаимопревращения элементарных частиц. Согласно закону сохранения лептонного заряда в замкнутой системе при любых процессах, разность между числом лептонов и антилептонов сохраняется. Условились считать для лептонов: . лептонный заряд а для антилептонов: . лептонный заряд . Для всех остальных элементарных частиц лептонные заряды принимаются равными нулю. Реакция не может идти из-за нарушения закона сохранения лептонного заряда , т.к.

 

ü Лептонного заряда

Барионного заряда

Спинового момента импульса

Электрического заряда

№2

Реакция не может идти из-за нарушения закона сохранения…

Решение:

Во всех фундаментальных взаимодействиях выполняются законы сохранения: энергии,импульса,момента импульса(спина)и всех зарядов(электрического Q,барионного B и лептонного L).Эти законы сохранения не только ограничивают последствия различных взаимодействий,но определяют также все возможности этих последствий. Согласно закону сохранения барионного заряда B,для всех процессов с участием барионов и антибарионов суммарный барионный зарад сохраняется. Барионам (нуклонам n,p и гиперонам)приписывается барионный заряд

B=-1,а всем остальным частицам барионный заряд-B=0.Реакция не может идти из-за нарушения закона барионного заряда B,т.к (+1)+(+1)

Варианты ответа: ,лептонного заряда,спинового момента импульса,электрического заряда.

№3

Законом сохранения электрического заряда запрещены реакции…

Варианты ответа(не менее 2):

 

Решение:

 

При взаимодействии элементарных частиц и их превращении в другие возможны только такие процессы,в которых выполняются законы сохранения,в частности закон сохранения электрического заряда:суммарный электрический заряд частиц,вступающих в реакцию,равен суммарному электрическому заряду частиц,полученных в результате реакции.Электрический заряд Q в единицах элементарного заряда равен:у нейтрона (n) Q=0,протона (P) Q=+1, электрона ( )Q=-1,позитрона ( ) Q=+1,электронного нейтрино и антинейтрино ( Q=0, антипротона ( Q=-1, мюонного нейтрино ( )Q=0, мюона ( ) Q=-1.Закон сохранения электрического заряда не выполняется в реакциях:

Фундаментальные взаимодействия.

 

№1Известно четыре вида фундаментальных взаимодействий. В одном из них участниками являются все заряженные частицы, обладающие магнитным моментом, переносчиками –фотона. Этот вид взаимодействия характеризуется сравнительной интенсивностью , радиус его действия равен …

 

Решение.

Все перечисленные характеристики соответствуют электромагнитному взаимодействию. Его радиус действия равен бесконечности.

 

ü









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.