Тема 3.1. Элементы теории вероятностей. Случайная величина, ее функция распределения
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Тема 3.1. Элементы теории вероятностей. Случайная величина, ее функция распределения





Студент должен:

знать:

- понятия: событие, частота и вероятность появления события, совместные и несовместные события, полная вероятность;

- теорему сложения вероятностей;

- теорему умножения вероятностей;

- основные формулы комбинаторики;

- способы задания случайной величины;

- определения непрерывной и дискретной случайных величин;

- закон распределения случайной величины;

уметь:

- находить вероятность в простейших задачах, используя классическое определение вероятностей;

- решать задачи с применением теоремы сложения вероятностей для несовместных событий;

- решать комбинаторные задачи;

- строить ряд распределения случайной величины;

- находить функцию распределения случайной величины.

Дидактические единицы:

Понятие события и вероятности события. Достоверные и невозможные события. Классическое определение вероятностей. Теорема сложения вероятностей. Теорема умножения вероятностей. Формула полной вероятности. Вероятность гипотез. Основные формулы комбинаторики. Случайная величина. Дискретная и непрерывная случайные величины. Закон распределения случайной величины.

Практическая работа № 6.

Примеры решения типовых задач:

Пример 1.Испытание состоит в подбрасывании игральной кости, на каждой из граней которой проставлено число очков (от 1 до 6). Какова вероятность того, что: 1) выпадает 2 очка? 2) выпадает нечетное число очков?

Решение 1: В данном испытании имеется 6 равновозможных случаев (выпадение 1, 2, 3, 4, 5, 6 очков), так как нет оснований предполагать, что появление какого-то определенного числа очков более вероятно (если, конечно, кость симметрична). Поэтому вероятность выпадения любого числа очков, в том числе и 2, при одном подбрасывании равна .



Событию А, заключающемуся в появлении нечетного числа очков, благоприятствуют три случая (выпадение 1, 3 и 5), поэтому по формуле получаем

Решение 2: В данном испытании имеется 2 равновозможных исхода (выпадение четного числа очков (т.е. 2, 4, 6) и нечетного), так как кость симметрична, то очевидно, что эти исходы равновозможные.

Событию А, заключающемуся в появлении нечетного числа очков, благоприятствуют 1 случай из двух, поэтому по формуле получаем

Отметим, что построенную таким образом пространство элементарных событий непригодно для расчета вероятности того, что выпадает 2 очка, так как этому событию не благоприятствует не один из введенных нами элементарных исходов.

Пример 2.В урне 5 белых и 10 черных шаров, не отличающихся по размеру. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым?

Решение.В этом примере имеется 15 равновозможных (шары не отличаются по размеру) исходов опыта, причем ожидаемому событию (появлению белого шара) благоприятствуют 5 из них, поэтому искомая вероятность составит .

Пример 3. В урне 5 белых, 20 красных и 10 черных шаров, не отличающихся по размеру. Шары тщательно перемешивают и затем наугад вынимают 1 шар. Какова вероятность того, что вынутый шар окажется белым или черным?

Решение. Пусть событие А – появление белого или черного шара. Разобьем это событие на более простые. Пусть В1 – появление белого шара, а В2 – черного. Тогда, А=В12 по определению суммы событий. Следовательно Р(А)=Р(В12). Так как В1 и В2 – несовместные события, то по теореме о вероятности суммы несовместных событий Р(В12) = Р(В1)+Р(В2).

Вычислим вероятности событий В1 и В2. В этом примере имеется 35 равновозможных (шары не отличаются по размеру) исходов опыта, событию В1 (появлению белого шара) благоприятствуют 5 из них, поэтому . Аналогично, . Следовательно, .

Пример 4.В совбезе ООН 11 членов: 5 постоянных и 6 так называемые ”малые нации”. Для принятия решении, надо, чтобы было 7 голосов ”ЗА”, причем следующим образом: все постоянные+как минимум 2 временных. Сколько всего вариантов голосования? Сколько всего можно организовать выигрышных коалиций? (Выигрышной коалицией называется такая, когда как бы не голосовали противники решение все равно будет принято.)

Решение.Так, как голосуют 11 делегаций и у них есть 2 выбора (“за”,”против”), то по принципу умножения имеем 2·2·2·2·2·2·2·2·2·2·2 = 211 = 2048– вариантов голосования. Так как все постоянные члены должны проголосовать ”за”, то выигрышная коалиция определяется только временными членами , а кол-во – количеством способов выбрать2 или 3 или 4 или 5 или 6 временных членов, голосующих ”за”.

Имеем способов, причем 15 – число так называемых минимальныхвыигрышных коалиций.

Вопросы для самоконтроля:

1. Событие и вероятность события.

2. Классическое определение вероятности.

3. Основные теоремы теории вероятностей.

4. Основные формулы комбинаторики.

5. Дискретная и непрерывная случайные величины.

6. Закон распределения случайной величины.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.