Три формы адекватности информации
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Три формы адекватности информации





В свете идей науки семиотики о знаковых системах, адекватность информации, соответствие ее содержания образу отображаемого объекта может выражаться в трех формах: синтаксической; семантической; прагматической.

Синтаксическая адекватность связана с воспроизведением формально-структурных характеристик отражения, абстрагировано от смысловых и потребительских параметров. На синтаксическом уровне учитываются: тип носителя; способ представления информации; скорость передачи и обработки информации; формат кодов представления информации; надежность и точность преобразования информации и т. п. Информацию, рассматриваемую только с синтаксических позиций, обычно называют данными.

Семантическая адекватность выражает аспект соответствия образа, знака и объекта, то есть отношение информации к ее источнику. Проявляется семантическая информация только при наличии единства информации (объекта) и получателя (субъекта). На семантическом уровне анализируются смысловое содержание сведений, рассматриваются смысловые связи между кодами представления информации.

Прагматическая адекватность отражает отношение информации и ее потребителя, соответствие информации и цели управления. Проявляются прагматические свойства информации только при наличии единства информации (объекта), пользователя (субъекта) и цели управления. Прагматический аспект рассмотрения информации связан с ценностью, полезностью информации для выработки управленческого решения. С этой точки зрения анализируются потребительские свойства информации.

Три формы адекватности информации соответствуют трем ступеням познания истины: от живого созерцания к абстрактному мышлению и от него к практике — таков диалектический путь познания истины, познания объективной реальности. Первая ступень соответствует восприятию внешних структурных характеристик, то есть синтаксической стороны информации. Вторая ступень обеспечивает формирование понятий и представлений, выявление смысла, содержания информации. Третья ступень непосредственно связана с практическим использованием информации для достижения целей деятельности системы.



Меры информации

В соответствии с тремя формами адекватности выполняется измерение информации. Терминологически принято говорить о количестве информации и об объеме данных.

Синтаксические меры информации

Объем данных в сообщении измеряется количеством символов (разрядов) принятого алфавита в этом сообщении. Часто информация кодируется числовыми кодами в той или иной системе счисления. Естественно, что одно и то же количество разрядов в разных системах счисления способно передать разное число состояний отображаемого объекта. Действительно, N = mn, где N— число всевозможных отображаемых состояний; m— основание системы счисления (разнообразие символов, применяемых в алфавите); n— число разрядов (символов) в сообщении. В различных системах счисления один разряд имеет различный вес, и соответственно, меняется единица измерения данных. Так, в двоичной системе счисления единицей измерения служит бит (binary digit, двоичный разряд), в десятичной системе счисления — дит (десятичный разряд).

Примечание

Сообщение, представленное в двоичной системе как 10111011, имеет объем данных Vд=8 бит; Сообщение 275903, представленное в десятичной системе имеет объем данных Vд=6 дит. Объем данных в сообщении не зависит от свойств получателя. Для всех получателей он имеет одинаковую величину.

В современных компьютерах наряду с минимальной единицей данных — битом, широко используется укрупненная единица измерения байт, равная 8 бит.

Для определения количества информации Клод Шеннон использовал понятие информационной неопределенности состояния (информационной энтропии) системы. Действительно, получение информации связано с изменением степени неосведомленности получателя о состоянии системы. До получения информации получатель мог иметь некоторые предварительные (априорные) сведения о системе a; мера неосведомленности о системе — Н(a) и является для него мерой неопределенности состояния системы. После получения некоторого сообщения b получатель приобрел дополнительную информацию Ib(a), уменьшившую его априорную неосведомленность так, что апостериорная (после получения сообщения b) неопределенность состояния системы стала Н(a/b). Тогда, количество информации Ib(a) о системе a, полученное в сообщении b, будет определено как: Ib(a) = Н(a) – Н(a/b).

Количество информации измеряется через изменение (уменьшение) неопределенности состояния системы. Если конечная неопределенность Н(a/b) обратится в нуль, то первоначальное неполное знание заменится полным знанием и количество информации станет равно: Ib(a) = Н(a). Иными словами, энтропия системы Н(a) может рассматриваться как мера недостающей информации. Энтропия системы Н(a), имеющей N возможных состояний, согласно формуле Шеннона равна:

где Pi — вероятность того, что система находится в i-м состоянии.

Для случая, когда все состояния системы равновероятны, то есть
Pi =1/N, энтропия системы:

Рассмотрим пример. По каналу связи передается n-разрядное сообщение, использующее m различных символов. Количество всевозможных кодовых комбинаций будет N = mn. При равновероятном появлении любой кодовой комбинации количество информации в правильном сообщении — формула Хартли:

Если в качестве основания логарифма принять m, то I=n. В данном случае количество информации (при условии полного априорного незнания получателем содержания сообщения) будет равно объему данных I=Vд.

Наиболее часто используются двоичные и десятичные логарифмы. Единицами измерения в этих случаях будут соответственно бит и дит.

Для неравновероятных состояний системы всегда:

I <Vд,

Примечание

Меру Шеннона нельзя считать чисто синтаксической мерой, поскольку эта мера зависит от свойств получателя (от вероятностей Pi, значения которых у разных получателей могут быть различными). Более правильно считать меру Шеннона полусемантической мерой количества информации.

Степень информативности сообщения Y определяется отношением количества информации к объему данных, то есть Y = I/Vд, причем 0<Y<1 (Y характеризует лаконичность сообщения). С увеличением Y уменьшаются объемы работы по преобразованию информации (данных) в системе. Для повышения информативности сообщений разрабатываются специальные методы оптимального кодирования информации.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.