Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







РАСЧЕТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМЫХ СИСТЕМ МЕТОДОМ СИЛ





Общие сведения

Расчет статически неопределимых систем методом сил начинают с вы­явления степени статической неопределимости. Степень статической не­определимости любой системы может быть установлена по формуле, которая для выявления степени статической неопределимости рам будет иметь вид:

Л = 3К — Ш, (23)

где Л – число лишних связей, К – число контуров, а для неразрезных балок — формулой (24):

Л = С оп - 3, (24)

где Соп — число опорных стержней.

Остановимся на применении формулы (23).

Пример 7.1.

Пользуясь формулой (23), опреде­лить степень статической неопределимости рамы, изображенной на рис. 7.1.

Рис. 7.1. Рама

Решение

Рама состоит из двух замкнутых контуров I и II. Шарнирно-неподвижная опора А равноценна одному простому шарниру, шарнирно-подвижная опора В — двум шарнирам. Следова­тельно, Ш= 1 + 2 = 3.

Степень статической неопределимости Л = 3К — Ш=3∙2 — 3 ==3 — рама трижды ста­тически неопределима.

Пример 7.2.

Определить степень статической неопределимости рамы, приведенной на рис. 7.2.

Рис. 7.2. 3-х контурная рама. Рис. 7.3. 6-ти контурная рама

Решение

Рама имеет три замкнутых контура (I, II и III). Сум­марное число шарниров Ш = 6 (два простых шарнира — Е и F и две шарнирно подвижные опоры —A и D). Число лишних связей Л =3∙3 — 6=3. Следовательно, рама трижды статически неопределима.

Пример 7.3.

Определить степень статической неопределимости рамы, изображённой на рис. 7.3.

Решение

В этой раме шесть замкнутых контуров. Простых шар­ниров — три (шарниры F,H и I). Шарнир G— двукратный, как соединяю­щий три стержня. Каждая из шарнирно-подвижных опор А, В, D и Е эквивалентна двум простым шарнирам, а шарнирно-неподвижная опора С — одному. Следовательно, Ш = 1∙3 + 2∙1 + 2∙4 + 1 =14. Тогда степень статической неопределимости Л =3∙6—14 =4. Таким образом, рама имеет четыре лишние связи, т. е. является четырежды статически неопределимой.

После того как будет установлена степень статической неопределимости, выбирают основную систему.

Выбор основной системы

Основной системой будем называть геометрически неизме­няемую статически определимую систему, полученную из заданной стати­чески неопределимой путем устранения лишних связей и нагрузки.

На рис. 7.4., а показана статически неопределимая рама — заданная система. Степень статической неопределимости этой системы:

Л = 3К Ш=3∙1—0 =3.

Следовательно, чтобы из заданной системы получить основную систему, надо освободить раму от нагрузки q и отбросить три лишние связи; по­следнее может быть выполнено различными способами, но в результате применения любого из них полученная основная система должна быть геометрически неизменяемой.

Так, например, на рис. 7.4., б показана основная система, полученная путем устранения нагрузки q и правой защемляющей опоры В, эквивалент­ной трем лишним связям.



 

Рис. 7.4. Выбор основной системы

Теперь сечение В основной системы может перемещаться по горизонталь­ному и вертикальному направлениям и поворачиваться в плоскости рамы на некоторый угол, т. е. в основной системе стали возможными те перемещения, которым в заданной системе препятствует правая защемляющая опора.

Чтобы устранить различие между заданной и основной системами, поступим так, как показано на рис. 7.4., в: нагрузим основную систему заданной нагрузкой q и вточке В ее, по направлениям указанных переме­щений сечения В, приложим соответствующие им пока неизвестные, горизонтальную и вертикальную силы Х1; Х2 и момент Х3.

Величины Х1; Х2; X3 называются лишними неизвестными и являются искомыми реакциями лишних связей, заменяющими действие отброшен­ных лишних связей на заданную систему.

Обращаем внимание, на то, что основная система, нагружен­ная заданной нагрузкой и лишними неизвестными, в отношении внут­ренних усилий и перемещений эквивалентна заданной статически неопре­делимой.

Кроме того, условимся в дальнейшем, как это принято в практических расчетах, основную систему на отдельном рисунке не изображать и взамен ее приводить рисунок выбранной основной системы, нагруженной задан­ной нагрузкой и лишними неизвестными.

Далее составляют уравнения совместности перемещений, каждое из которых должно выражать условие равенства нулю суммарного пере­мещения по направлению той или иной, отброшенной связи (неизвестной силы) от заданной нагрузки и всех лишних неизвестных. Эти уравнения, написанные в определенной, раз навсегда установленной форме, называют каноническими уравнениями метода сил. Число их должно равняться числу отброшенных связей. Для рассматриваемой рамы необходимо составить, таким образом, три канонических уравнения, имеющих следующий вид:

δ11X1 + δ12X2 + δ13X3 + ∆1p = 0

δ21X1 + δ22X2 + δ23X3 + ∆2p = 0 (25)

δ31X1 + δ32X2 + δ33X3 + ∆3p = 0

где δ11 —перемещение точки приложения силы X1 по направлению этой силы от единичной силы = 1;

δ11 X1 —перемещение той же точки в том же направлении, вызванное полным значением X1;

δ12 — перемещение точки приложения силы X1 по направлению этой силы, вызванное единич­ной силой

δ12 X2 — перемещение той же точки в том же направле­нии, вызванное полным значением силы Х2;

δ13 — перемещение точки приложения силы Хх по направлению этой силы от единичной силы = 1;

δ13X3 — перемещение той же точки в том же направлении, вызван­ное полным значением силы Х3;

1p —перемещение той же точки в том же направлении, вызванное заданной нагрузкой; δ21 X1 — перемещение точки приложения силы Х2 по направлению этой силы, вызванное силой X1, и т. д.

Следует иметь в виду, что один раз составленные в общем виде п канонических уравнений с п неизвестными применимы для любой п раз стати­чески неопределимой системы. Так, уравнения (25) справедливы для любой трижды статически неопределимой системы.

Составив канонические уравнения метода сил, следует перейти к вы­числению единичных δik и грузовых ∆ip перемещений.

Для этого предварительно введем понятия о грузовом и единичном состояниях основной системы.

Грузовым назовем то состояние основной системы, при котором она находится только под действием заданной нагрузки.

Единичнымбудем называть состояние основной системы, при ко­тором она нагружена только одной силой, равной единице е = 1, дейст­вующей в направлении неизвестной реакции Xt.

Заметим, что число единичных состояний основной системы должно соответствовать степени статической неопределимости заданной системы,

т. е. числу лишних неизвестных. Изобразив на рисунках грузовое и отдельно все единичные состояния основной системы, строят соответствующие им грузовую Мр и единичные M1, M2, ..., Мп эпюры изгибающих моментов.

Наконец, используя способ перемножения эпюр, вычисляют единич­ные δik и грузовые ∆ip перемещения.

Перемножая эпюры, следует помнить, что на основании теоремы о взаимности пере­мещений (теоремы Максвелла) единичные перемещения с взаимно пере­ставленными индексами равны между собой, т. е. δik = δki.

Вычисленные значения δik и ∆ip подставляют в канонические уравнения и решают полученную систему уравнений, в результате чего нахо­дят значения неизвестных реакций связей X1, X2, ..., Хп.

Нагрузив те­перь основную систему заданной нагрузкой и уже известными силами X1 = А12 = А2, ..., Хп = Ап, строят обычным путем (как для статиче­ски определимой системы) эпюры Q, М и N, которые и являются оконча­тельными эпюрами поперечных сил, изгибающих моментов и продольных сил для заданной системы.

Окончательную эпюру изгибающих моментов можно также получить путем суммирования ординат эпюры Мр с соответствующими ординатами эпюры

После определения неизвестных можно сразу получить эпюру М, по которой построить эпюру Q, а продольные силы определить из условий равновесия вырезаемых узлов рамы. Опорные реакции в этом случае находят в последнюю очередь, используя эпюры Q, М и N,

умноженными на X1, ординатами эпюры , умноженными на Х2 ..., и ординатами эпюры , умноженными на Хп, т. е.

Единичные перемещения с одинаковыми индексами (δ11, δ22, δ33 и т.д.) принято называть главными перемещениями, а с разными индексами

(δ12, δ13, δ23 и т.д.) — побочными.

Главные перемещения никогда не обращаются в нуль и всегда имеют положительное значение, так как в этом случае эпюры умножаются сами на себя, т. е. и площадь ω и ордината у берутся из одной и той же эпюры.

Побочные перемещения могут быть положительными, отрицательными, а при удачном выборе основной системы и равными нулю. В последнем случае в значительной мере сокращаются и упрощаются операции по вы­числению перемещений.

На рис. 7.4., б основная система выбрана неудачно, так как для нее ни одно из побочных перемещений не обратится в нуль. Ниже эта рама будет рассчитана, при более рациональном выборе основной системы.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.