Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Репитеры СПРВ и режимы их работы





 

В процессе развития практически любой из рассмотренных выше СПРВ как правило возникает необходимость расширения зоны ее действия. Наиболее простым способом достижения этой цели является увеличение выходной мощности пейджингового передатчика и/или действующей высоты передающей антенны. Однако это не всегда допустимо из-за ограничений по электромагнитной совместимости радиоэлектронных средств в данном районе. Кроме того, указанные меры зачастую не позволяют кардинально решить проблему из-за "затенения" некоторых участков различными зданиями или элементами рельефа местности. Чаще всего расширение зоны обслуживания достигается за счет использования в системе нескольких передатчиков, управление которыми осуществляется по принципу R-систем. При этом каждая базовая станция оборудуется пейджинговым репитером, структурная схема которого приведена на рисунке 3.

Репитер представляет собой автономное приемно-передаощее устройство, включающее блок питания, приемопередатчик и блок управляющей логики.

Рисунок 3 - Структурная схема репитера

 

Приемопередатчик совместно с блоком управляющей логики осуществляет прием сигнала от базовой станции (или другого репитера), обработку информации с коррекцией ошибок и повторную передачу принятого сигнала.

Репитер может функционировать в следующих режимах:

- ожидания и приема сообщений;

- повторения всех сообщений;

- повторения пакетов данных с указанием адреса репитера;

- повторения всех пакетов с передачей их конкретному репитеру;

- повторения пакетов с адресацией по субкодам;

- самодиагностики;

- донесения результата диагностики на указанный пейджер.

Режим ожидания и приема сообщений является основным. В указанный режим репитер переходит после повторения всех ранее принятых сообщений. При этом репитер ожидает поступления блока синхронизации, после приема которого, осуществляется прием синхрослова или его инверсии. Затем принимается и декодируется адрес репитера, передающего сообщение. После установления синхронизации осуществляется прием сообщений, исправление обнаруженных ошибок и запись их в запоминающее устройство (ОЗУ). Если в процессе приема сообщений происходит переполнение ОЗУ, то все ранее принятые сообщения стираются и репитер переходит в режим ожидания очередного блока синхронизации.

В этом же режиме репитер может принимать сообщения в виде одного цифрового пакета, а также многопакетные сообщения. В последнем случае после окончания приема первого пакета репитер ожидает поступления следующего в течение некоторого времени. Если в течение этого установленного интервала времени очередной пакет не поступит, то репитер переходит из режима приема в режим ожидания поступления новых сообщений. Особенностью многопакетного режима является то, что при поступлении в установленный временной интервал "постороннего" сообщения, передаваемого с другой скоростью или полярностью модуляции, оно будет принято и записано в ОЗУ до окончания приема многопакетного сообщения.



Режим повторения всех сообщений. В этом режиме после приема сообщения или последовательности пакетов, из которых оно состоит, принятое сообщение повторяется полностью, после чего репитер переходит в режим ожидания.

Режимповторения пакетов сообщений с адресом репитера используется, как правило, при большой протяженности трассы радиопередачи, В этом случае сообщения передаются только после приема начального блока синхронизации и декодирования адреса очередного репитера. При последующей передаче адрес приема (очередного репитера) заменяется на адрес отправки, что обеспечивает возможность передачи сообщения по цепочке репитеров, т.е.в этом режиме используется два набора адресов приема и передачи, при этомвторая пара называется адресами обратного канала и используется для донесения о состояния репитера.

В режиме повторения всех пакетов сообщений с передачей их конкретному репитеру первый в цепочке репитер осуществляет прием всех сообщений от базовой станции, игнорируя сообщения, поступающие от других репитеров системы, чьи адреса указаны в специальном перечне. Наличие данного режима работы обеспечивает возможность совместного использования оборудования различных производителей СПРВ и предотвращает "зацикливание" системы.

Режим повторения пакетов сообщении с адресацией но субкодам реализуется за счет присвоения каждому репитеру входного и выходного субкодов. В этом режиме работы репитер принимает сообщения от базовой станции или другого репитера. При совпадении субкода сообщения с входным субкодом репитера, поступившее сообщение передается с указанием выходного субкода репитера. В случае несовпадения субкодов сообщение не передается.

Режимы самодиагностики и передачи донесений о состоянии репитера на указанный пейджер являются технологическими и обеспечивают возможность осуществления дистанционного контроля за рабочими параметрами репитера.

В заключение необходимо заметить, что существующие репитеры могут работать в безадресном или только в одном из рассмотренных выше режимов.

Основные технические характеристики, обобщенные по множеству известных типов репитеров приведены в таблице 1.

Таблица 1 - Основные технические характеристики репитеров

Параметр Значение
Чувствительность приемника, мкВ Не хуже 0,5
Стабильность частоты гетеродина < 2,5 Е-6 в диапазоне рабочих частот
Ширина полосы пропускания по уровню – 3 дБ, кГц
Выходная мощность передатчика, Вт До 50
Отклонение частоты < 2,5 Е-6 в диапазоне рабочих частот
Ширина полосы излучения на уровне – 30 дБ
Количество программируемых рабочих каналов До 99
Емкость ОЗУ, кБит До 140
Напряжение питания, В ~ 220; 13,6
Потребляемая мощность, Вт Не более 200
Наличие органов управления Как правило, отсутствуют Управление дистанционное
Вес, кг До 40
Рабочий диапазон температур, град. -30… +60

5.4 Основные протоколы передачи информации в СПРВ

 

В настоящее время известно достаточно большое количество протоколов пейджинговой связи, первым из них появился TWOTONE. Указанный протокол предусматривал передачу от базовой станции радиосигнала, представляющего собой несущую, промодулированную двумя низкочастотными посылками фиксированной длины с. последующим приемом и выделением заданной адресом пейджера комбинации частот этих посылок. Этот протокол позволял передавать в эфир только сигнал вызова сильно ограниченному кругу пользователей. Поэтому на смену ему пришли более совершенные протоколы (FIVETONE и 5/6 TONE), построенные по принципу модуляции несущей разнотональными посылками. С внедрением данных протоколов появилась возможность реализации режима работы пейджера с низким энергопотреблением. Сущность этого режима состоит в передаче дополнительной посылки, обеспечивающей включение декодера пейджера только на время приема сообщения.

Дальнейшее развитие пейджинговых протоколов пошло по пути частотной модуляции несущей двоичными сигналами. Такой подход обеспечил возможность создания специализированного оборудования, использующего высокоскоростные и помехозащищенные цифровые протоколы доведения информации.

Однако эти протоколы имеют ряд существенных недостатков, поэтому в настоящее время на территории РФ получили наиболее широкое распространение протоколы POCSAG, ERMES и FLEX, которые будут рассмотрены ниже.

5.4.1 Протокол POCSAG

Этот стандарт был утвержден Международным союзом электросвязи (МСЭ) как международный в 1982г. Основными его достоинствами по сравнению с другими протоколами того времени являются: высокая скорость передачи информации, эффективный алгоритм обнаружения и исправления ошибок, большое число производителей оборудования. Для увеличения производительности СПРВ протокол обеспечивает скорость передачи информации 512, 1200 и 2400 бит/с.

Сообщения передаются в асинхронном режиме: пакет сообщения может стартовать в любой момент времени и длина его не определена.

Общая структура сигнала в формате POCSAG приведена на рисунке 4.

Рисунок 4 - Структура сообщений в форме POCSAG

 

Сигнал в формате POCSAG начинается с преамбулы, состоящей из 576 бит чередующихся 0 и 1. Преамбула служит для вывода приемного устройства (пейджера) из «спящего» состояния в режим «приема» и его тактовой синхронизации.

После преамбулы следует поток блоков, содержащих физические адреса пейджеров и тексты сообщений. Длина кодовой последовательности в формате POCSAG не определена, блоки следуют один за другим каждый со своим кодовым словом синхронизации – для подстройки синхронизации приемников (при передаче длинных сообщений).

Каждый блок состоит из 17-ти 32-битовых слов. Первое из них – слово синхронизации (фиксированная последовательность 32 бит: 0111 1100 1101 0010 0001 0101 1101 1000), далее идет последовательность из восьми двойных слов или кадров (фреймов), нумеруемых с 0-го по 7-ой.

Каждое 32-разрядное слово содержит 21 информационный бит и 11 избыточных (контрольных) бит, которые служат для определения и корректировки ошибок. Протокол предусматривает коррекцию ошибок по алгоритму БЧХ, при котором в одном 32-битном кодовом слове корректируется ошибка при приеме одного неверного бита (или двух, если расстояние между ними не превышает 6 бит), а возникновение от 2-х до 5-ти ошибок детектируется (т.е. это слово исключается и в большинстве моделей текстовых пейджеров эта часть обозначается скобками).

В зависимости от функционального назначения блоки делятся на адресные, в которых передается физический адрес пейджера, и информационные, содержащие текст сообщения.

Основное отличие протокола POCSAG от других протоколов пейджинговой передачи заключается в способе приема содержащегося в начале каждого пейджингового сообщения физического адреса пейджера - кэпкода (CapCode), которому оно адресовано. Все возможные 2 млн. физических адресов разбиты на 8 групп, соответствующие 8 кадрам (frames) адресного блока.

Адресный блок состоит из адресного кодового слова и предшествующих "пустых" слов (специальные фиксированные 32-битовые последовательности) и формируется следующим образом: физический адрес пейджера делится на 8. Остаток от деления дает номер фрейма, в первое слово которого записывается частное от деления. Во все предыдущие фреймы записываются "пустые" слова (специальные фиксированные 32-битовые последовательности: 0111 1010 1000 1001 1100 0001 1001 0111), а все оставшиеся до конца адресного блока слова пропускаются, т.е. сразу за адресным словом начинается следующий блок. Фактически остаток от деления является номером интервала времени (кадра - frame), в котором данный пейджер будет вести прием и распознавание своего номера.

Пейджер принимает только кадры, соответствующие его адресу. Это позволяет в восемь раз увеличить адресную емкость системы и значительно повысить срок службы элементов питания.

Информационный блок служит для передачи цифровой и алфавитно-цифровой информации на пейджер, заданный адресным блоком. Он содержит слово синхронизации, информационные слова, и, если сообщение закончилось, "пустые" слова до конца блока.

Увеличение скорости передачи сообщений ведет к увеличению пропускной способности системы, однако, при этом снижается устойчивость к помехам, а главное - снижается чувствительность радиоприема, т.е. фактически - радиус рабочей зоны приема сообщений. Для подавляющего большинства пейджеров чувствительность в зависимости от скорости передачи равна следующим значениям: 512 бит/с - 5 мкВ/м; 1200 бит/с - 7 мкВ/м; 2400 бит/с - 9 мкВ/м.

5.4.2 Протокол FLEX

Протокол пейджинговой связи FLEX разработан формой Motorola. Основным достоинством этого протокола является высокая скорость передачи данных - 1600, 3200 и 6400 бит/с, а, следовательно, высокая пропускная способность. Так, если в стандарте POCSAG ресурс частоты составляет 10-15 тысяч абонентов, то во FLEX-системах ресурс частотного канала лежит в пределах 20-80 тысяч абонентов. В отличие от протокола POCSAG протокол FLEX использует синхронную передачу данных, т.е. синхронизация передатчика и приемника производится по абсолютному значению времени.

Структура формата FLEX приведена на рис. 5.

При скорости 1600 бит/с используется 2-уровневая частотная модуляция. При скорости 3200 бит/с может использоваться как 2-уровневая, так и 4-уровневая частотная модуляция. При скорости 6400 бит/с используется 4-уровневая частотная модуляция. Значения девиации для различных двоичных данных при 2-уровневой и 4-уровневой частотной модуляции приведены на диаграмме рис. 6.

Данные в протоколе FLEX формируются в кадры, которые передаются последовательно со скоростью 32 кадра в минуту (1,875 с на кадр). Полный цикл протокола FLEX состоит из 128 кадров, которые нумеруются от 0 до 127, и передаются ровно 4 минуты. Каждый час делится на 15 циклов, пронумерованных от 0 до 14.

Так как протокол FLEX является синхронным, для его синхронизации используются сигналы точного времени, передаваемые в начале каждого часа в кадре 0 цикла 0. При передаче этого кадра осуществляется синхронизация приемников.

Каждый кадр протокола FLEX передается 1,875 с и состоит из блока синхронизации (115 мсек) и 11 информационных блоков (но 160 мс на блок).

Рисунок 5 - Структура формата FLEX

 

Блок синхронизации обеспечивает синхронизацию кадра и настройку пейджеров (фрагменты "Синхрон. 1" и "Синхрон.2"), а также несет информацию о номере цикла и кадра (фрагмент "Кадр инфо").

Рисунок 6 - Значения девиации для различных двоичных данных

 

Информационные блоки содержат служебную информацию, адресное поле, задающее адреса пейджеров, которым адресованы сообщения, векторное поле, указывающее, где расположены сообщения в поле сообщений и их длина, и непосредственно поле сообщений, содержащее сами сообщения. Последовательность расположения полей в кадре показана на рис. 7.

Рисунок 7 - Последовательность расположения полей в кадре FLEX

 

Поля не привязаны к границам блока. Порядок расположения адресов пейджеров в адресном поле должен соответствовать порядку расположения векторов в векторном поле. Адреса пейджеров могут задаваться одним кодовым словом (короткий адрес), поддерживая при этом до 2 миллионов адресов, или двумя кодовыми словами (длинный адрес), поддерживая до 5 миллиардов адресов.

При кодировании информации используется код БЧХ, позволяющий восстанавливать единичные ошибки передачи данных. Кроме того, используемая в протоколе последовательность передачи сформированных бит информации позволяет восстанавливать принятые данные при пропадании сигнала на интервале до 10 мс.

К достоинствам протокола FLEX следует отнести:

- повышенную скорость передачи данных, а, следовательно, повышенную пропускную способность на один частотный канал;

- возможность поддержания большого количества адресов (до 5 миллиардов);

- улучшенные характеристики помехоустойчивости канала передачи;

- обеспечение энергоэкономичного режима работы пейджеров;

- возможность совместной работы с другими протоколами.

5.4.3 Протокол ERMES

Протокол ERMES был разработан как общеевропейский протокол пейджинговой связи.

К достоинствам протокола ERMES следует отнести следующее:

- повышенную скорость передачи данных, а, следовательно, повышенную пропуски способность на один канал;

- обеспечение энергоэкономичного режима работы пейджеров;

- возможность передачи произвольного набора данных объемом до 64 Кбит;

- возможность удобной организации роуминга во всех регионах, охваченных сетью ERMES

Для функционирования СПРВ по протоколу связи ERMES выделяется единый диапазон частот (или его часть) 169,4-169,8 МГц, в котором организуются 16 частотных каналов c разносом частот в 25 кГц. Для приема сигнала используются сканирующие по частоте абонентские приемники (пейджеры). Скорость передачи данных составляет 6,25 кбит/с.

Системы персонального радиовызова на базе протокола ERMES обеспечивают следующие услуги:

- передачу цифровых сообщений длиной до 1600 знаков;

- передачу буквенно-цифровых сообщений длиной до 9000 символов;

- передачу произвольного набора данных объемом до 64 Кбит;

- возможность приема вызова и сообщений одним унифицированным приемником (пейджером) во всех странах, входящих в объединенную СПРВ ERMES.

Структура протокола ERMES приведена на рис. 8.

Рисунок 8 - Структура протокола ERMES

 

Каждый час передается 60 циклов по одной минуте каждый. Каждый минутный цикл содержит 5 последовательностей по 12 с. Каждая из последовательностей включает в себя 16 типов групп, которые обозначаются буквами латинского алфавита от А до Р. Каждая группа имеет длину 0,75 с и состоит из четырех блоков: синхронизации; служебной информации; адреса; информационного сообщения.

Порядок расположения групп внутри последовательности для каждого частотного канала свой и устроен так, что позволяет пейджеру в пределах последовательности просмотреть свою группу в режиме сканирования на всех 16 частотах.

Протокол ERMES использует помехоустойчивое кодирование передаваемой информации с прямой коррекцией ошибок (FEC), циклический код (30, 18), кодовое расстояние Хемминга - 6.

Приемники персонального вызова (пейджеры) в системе ERMES работают следующим образом. Находясь в зоне приема "своей" базовой станции пейджер принимает сообщения на ее частоте. При попадании в другой регион пейджер, не "слыша" сигнал на своей частоте, переходит в режим сканирования по каналам ERMES и, обнаружив сигнал, начинает принимать информацию на частоте базовой станции данного региона.

Протокол RDS

 

Протокол RDS (Radio Data System) получил путевку в жизнь в начале 90-х годов в качестве многофункционального формата передачи данных, как на адресные, так и на безадресные приемники. Принцип передачи данных основан на уплотнении сигнала вещательной станции, работающей в FM и УКВ диапазонах. Передача данных происходит путем замешивания в комплексный стереосигнал на поднесущей частоте 57 кГц с девиацией ±2 кГц частотно-модулированного сигнала RDS. Спектр суммарного сигнала показан на рис. 9 (где А и В - сигналы левого и правого каналов стереовещания).

Рисунок 9 - Спектр суммарного сигнала

 

Помимо пейджинговых сообщений, формат RDS позволяет передавать на радиприем-ники с декодером сигнала RDS различную текстовую информацию в виде неподвижной или бегущей строки - это может быть название принимаемой радиостанции, темп музыки, рекламные тексты. Более того, радиоприемник, при переезде из одного города или области в другие, может сам настраиваться на требуемую радиостанцию или выбранный тип передачи (классическая музыка, рок, известия и пр.) и, при передаче экстренных сообщений, переключаться из других режимов (проигрывание компакт-дисков и аудиокассет) на прием.

Протокол RDS рассчитан на работу с фиксированной скоростью 1187 бит/с и имеет структуру, показанную на рис.10.

Самый большой элемент в структуре формата называется "группой" и содержит 104 бита информации. Каждая группа включает в себя 4 блока по 26 битов каждый. Блок состоит из 16-разрядного информационного слова и 10-разрядного контрольного слова. Передача данных полностью синхронна и не имеет разрывов между группами или блоками. Информационное слово служит непосредственно для передачи данных. Контрольное слово - для синхронизации и исправления ошибок.

Информационные слова группы RDS содержат следующую информацию.

Группа начинается с 16-разрядного, так называемого Pi-кода (Program Identification), индивидуального для каждой страны, который является признаком RDS передачи, и, соответственно, страны, в которой эта передача ведется.

Следующие пять бит (начало второго блока) определяют тип передачи данных: радиотекст, передача времени и даты, радиопейджинг и пр.

Один бит (бит ТР - Traffic program) управляет переключением радиприемника из режима проигрывания аудиокассеты или CD-диска в режим приема при передаче важных информационных сообщений. Следующие 5 бит формируют название программы, которое высвечивается на дисплеи радиоприемника при приеме вещательной станции. Это могут быть новости (News), спортивная информация (Sport), типы передаваемой музыки (например Rock, Jazz, Classic) и т.д.

Далее идет (последние 5 бит второго информационного слова) 5-ти разрядный адресный код AC (Address Code), который определяет местоположение данных передаваемых сообщений и команд, в том числе и адрес пейджерного приемника.

Рисунок 10 - Структура формата RDS

 

При передаче пейджингового сообщения тип передачи данных задается как 01110, а адрес пейджера и само сообщение передаются в нескольких последовательных группах и занимают в каждой группе два последних блока. Первоначально следует адрес пейджера, а затем символы самого сообщения.

В организации передачи пейджингового сообщения участвуют и другие RDS группы предназначенные для передачи времени и даты, а также синхронизации RDS приемников. Синхронизирующая метка передается каждую секунду, а время и дата - каждую минуту.

Стандарт RDS рассчитан для одновременной поддержки 4 пейджинговых сетей. Поскольку формат RDS "не привязан" к конкретной частоте, а работает в диапазоне частот (FМ/УКВ), пейджер для своей настройки производит сканирование всего диапазона. После настройки на одну частоту вещательной станции в течение 1 с происходит синхронизация приемника, в течение 2 с определяется код страны и признак сети пейджинга. Если они не соответствуют кодам, хранящимся в памяти пейджера, то он настраивается на волну другой радиостанции. После нахождения своей сети пейджер в течение 15 с переходит в режим экономии батарейки. Организация экономии расхода электроэнергии достигается за счет активизации приемника в отдельные интервалы времени, определяемые его индивидуальным номером, и аналогична подобной организации в стандарте POCSAG. Специфика RDS-стандарта - уплотне­ние сигнала вещательной станции - позволяет операторам связи в большинстве случаев с меньшими капиталовложениями, чем для других систем, развернуть СПРВ. Экономия объясняется отсутствием расходов на частотное присвоение, антенно-фидерное устройство и передатчик, которые являются весьма дорогостоящим оборудованием. Расходы же состоят из арендной платы за поднесущую 57 кГц, стоимости кодера RDS и организации диспетчерской.

Зона покрытия RDS пейджинга при эксплуатации наиболее широко распространенных RDS-пейджеров Nokia, Infotelecom, Matador на 10-20% меньше зоны устойчивого приема самой вещательной станции и имеет, как правило, радиус в несколько десятков км. Для выравнивания зон вещания и RDS пейджинга, а также уменьшения ошибок при передаче пейджинговых сообщений, обусловленных взаимным влиянием спектров вещательного и RDS сигналов, в передающий тракт включают аудиопроцессор.

Аудиопроцессор осуществляет компрессию сигнала, а также ограничение по частотному диапазону, подавляя высокочастотные компоненты (выше 15 кГц) спектра вещательного сигнала левого и правого каналов. Это исключает наложение спектра сигнала КСС на спектр RDS. В качестве аудиопроцессоря на российском рынке широко используется процессоры американской фирмы SRL марки SMP-850.

Дальнейшим развитием системы RDS является система голосового пейджинга Моbi DARC.

Центральной частотой передачи пейджинга здесь выбрана частота 76 кГц. Система MobiDARC не оказывает влияния на передаваемую аудиоинформацию, а также на другие системы передачи данных на поднесущей (RDS с центральной частотой 57 кГц). Канальная скорость передачи данных - 16 кбит/с (эффективная скорость - 1200 бит/с). Удельная емкость системы голосового пейджинга - 35000 абонентов на одну частоту из расчета 1,5 сообщений в день длительностью 45 с для каждого абонента.

 

6 Литература

 

6.1 Соловьев А.А. Пейджинговая связь. - М.: ЭКО-ТРЕНДЗ, 2000.

 

 

Практическая работа № 3

 

«Изучение общих принципов организации систем подвижной связи»

 

1 В результате выполнения работы студент должен

знать:

- общие принципы построения систем подвижной связи;

- основные стандарты сотовых систем связи.

уметь:

- применять принципы повторного использования выделенного ресура частот.

 

2 Содержание работы

Цель работы: Изучение общих принципов построения и организации систем подвижной радиосвязи.

 

3 Направляющие вопросы

3.1 Дайте понятие частотно-территориального плана.

3.2 Что называется кластером?

3.3 Как влияет коэффициент повторного использования частот на емкость сети?

3.4 Поясните понятие интеллектуальная антенная система.

3.5 В чем отличие микросотовых сетей подвижной связи от макросотовых сетей?

3.6 Поясните процедуру «ведение абонента», «роуминг».

3.7 Назначение каналов трафика и управления.

3.8 Поясните назначение центра коммутации.

3.9 Назначение интерфейсов в сетях сотовой связи.

 

4 Рабочее задание

4.1 Ознакомиться с общими принципами построения систем подвижной радиосвязи. Изучить основные стандарты сотовых систем связи, дать их характеристику:

Вариант А – стандарт GSM;

Вариант Б – стандарт ADC;

Вариант В – стандарт JDC.

Номер варианта задается преподавателем.

4.2 Изучите особенности построения цифровых ССПС с макросотовой структурой. Приведите значения количества каналов N на соту для ССПС различных стандартов при разных коэффициентах повторного использования частот. Сделайте вывод.

4.3 Изучите и перечислить основные категории каналов, предусмотренные в ССПСЭ.

 

5 Указания по выполнению работы

 

В разных источниках используется различное название систем мобильной связи, в данном случае будем использовать два названия: сотовые системы мобильной связи (ССМС) и сотовые сухопутные подвижные системы электросвязи (ССПЭ).

 

5.1 Основные стандарты ССПС

 

Развитие в 70-х годах сотовых систем подвижной связи и их внедрение решили проблему экономии спектра радиочастот путем многократного использования выделенного частотного ресурса при пространственном разнесении приемопередатчиков с совпадающими рабочими частотами. Сотовая топология позволила многократно увеличить емкость телекоммуникационных сетей по отношению к сетям радиальной структуры без ухудшения качества связи и расширения выделенной полосы частот. Однако, внедрение систем сотовой подвижной связи (ССПС) началось после того, как были найдены способы определения текущего местоположения подвижных абонентов и обеспечения непрерывности связи при перемещении абонента из одной соты в другую.

Известны девять основных стандартов аналоговых ССПС. Один из них NMT-450 принят в качестве федерального стандарта для России. На его основе созданы ССПС в Москве ("Московская сотовая связь"), Санкт-Петербурге ("Дельта-Телеком") и других городах.

Однако, аналоговые ССПС уже не удовлетворяют современному уровню развития информационных технологий из-за многочисленных недостатков, главные из которых: несовместимость стандартов; ограниченная зона действия; низкое качество связи; отсутствие засекречивания передаваемых сообщений и взаимодействия с цифровыми сетями с интеграцией служб (ISDN) и пакетной передачи данных (PDN).

В последние годы из-за ограниченных возможностей стандартов NMT-450 и NMT-900 во всем мире наблюдается снижение роста числа их пользователей.

В 80-х годах в Европе, Северной Америке и Японии приступили к интенсивному изучению принципов построения перспективных цифровых ССПС и сегодня уже разработаны три стандарта таких систем с макросотовой топологией сетей и радиусом сот до 35 км: общеевропейский стандарт GSM, принятый Европейским институтом стандартов в области связи (ETSI); американский стандарт ADC (D-AMPS), разработанный Промышленной ассоциацией в области связи (TIA); японский стандарт JDC, принятый Министерством почт и связи Японии.

Общеевропейский стандарт GSM - первый в мире стандарт на цифровые ССПС, который предусматривает их создание в диапазоне 900 МГц и является основой стандарта ССПС DCS 1800 (диапазон 1800 МГц) с микросотовой структурой, принятого в настоящее время в Европе. Стандарт GSM реализуется в настоящее время в Северной Америке в диапазоне 1900 МГц (PCS-1900).

Указанные выше стандарты на цифровые ССПС отличаются своими характеристиками. Они построены на единых принципах и концепциях и отвечают требованиям современных информационных технологий (табл. 1).

Таблица 1

 

№№ п.п. Характеристики стандарта GSM DCS18000, PCS1900 ADC JDC
Метод доступа ТDМА TDMA TDMA
Разнос частот 200 кГц 30 кГц 25 кГц
Количество речевых каналов на несущую 8(16) 3(6)
Скорость преобразования речи 13 кбит/с (6,5 кбит/с) 8 кбит/с 1 1 ,2 кбит/с (5,6 кбит/с)
Алгоритм преобразования речи RPE-LTP VSELP VSELP
Общая скорость передачи 270 кбит/с 48 кбит/с 42 кбит/с
Метод разнесения Перемежение, скачки по частоте Перемежение Перемежение
Эквивалентная полоса частот на речевой канал 25 кГц (12,5 кГц) 10 кГц 8,3 кГц (4, 15 кГц)
Вид модуляции 0,3 GMSK p/4 DQPSK p/4 DQPSK
Требуемое отношение несущая/интерференция (С/1) 9 дБ 16 дБ 13 дБ
Рабочий диапазон частот 93 5-960 МГц 824-840 МГц 8 10-826 МГц
    890-9 15 МГц 869-894 МГц 940-956 МГц
        1429-1441 МГц
        1447- 1489 МГц
        1453-1465 МГц
        1501-1513 МГц
Радиус соты 0,5-35 км 0,5-20 км 0,5-20 км

 

Стандарт GSM - результат фундаментальных исследований ведущих научных и инженерных центров Европы. Разработанные в GSM системные и технические решения могут использоваться для всех перспективных цифровых ССПС. В первую очередь, к таким решениям относятся: построение сетей GSM на принципах интеллектуальных сетей; распространение модели открытых систем на ССПС; внедрение новых, более эффективных, моделей повторного использования частот; применение временного разделения каналов связи (ТDМА); временное разделение режимов приема и передачи пакетированных сообщений; использование эффективных методов борьбы с замираниями сигналов, основанных на частотном разнесении, путем применения режима передачи с медленными скачками по частоте (SFH) и тестирования канала связи с помощью псевдослучайной последовательности, известной в приемнике; применение блочного и сверточного кодирования в сочетании с прямоугольным и диагональным перемежением; программное формирование логических каналов связи и управления; использование спектрально-эффективного вида модуляции (GMSK); разработка высококачественных низкоскоростных речевых кодеков; шифрование передаваемых сообщений и закрытие данных пользователей.

Принципиально новым шагом в развитии ССПС было принятие для GSM концепции интеллектуальной сети и модели открытых систем (OSI), одобренных международной организацией стандартов.

Американский стандарт ADC (D-AMPS) разрабатывался для отличных от Европы условий; диапазон частот 800 МГц и работа в общей с существующей аналоговой ССПС AMPS полосе частот. В этом случае для цифровой ССПС необходимо было сохранить частотный разнос каналов 30 кГц, используемый в AMPS, и обеспечить одновременную работу абонентских радиостанций как в аналоговом, так и в цифровом режимах. Применение специально разработанного речевого кодека (VSELP), имеющего скорость преобразования речевого сигнала 8 кбит/с, и цифровой дифференциальной квадратурной фазовой манипуляции со сдвигом p/4 позволило в режиме ТDМА организовать три речевых канала на одну несущую с разносом канальных частот 30 кГц (табл. 1).

Японский стандарт JDC во многом совпадает с американским. Основные отличия заключаются в использовании другого частотного диапазона, дуплексного разноса полос частот приема и передачи 55 МГц при разносе каналов 25 кГц. Стандарт JDC адаптирован также к диапазону 1500 МГц (табл. 1).

Все стандарты цифровых ССПС обеспечивают взаимодействие с ISDN и PDN. Принятые технические решения гарантируют высокое качество передаваемых сообщений в режимах открытой или закрытой (засекреченной) передачи.

 

5.2 Общие принципы построения сотовой сухопутной подвижной системы электросвязи

5.2.1 Основные понятия

Главные элементы сотовой сухопутной подвижной системы электросвязи (ССПСЭ) - это центр коммутации подвижной службы (ЦКПС), а также станции (БС и АС). Все БС соединены со своим ЦКПС стационарными линиями связи (кабельными, радиорелейными и др.), а все ЦКПС сети - стационарными линиями с транзитными коммутаторами ТФОП и обмениваются информацией по общему каналу сигнализации ОКС 7.

Сотовые сухопутные подвижные системы электросвязи строят на основе частотно- территориальных планов (ЧТП). При составлении ЧТП обслуживаемую территорию разделяют между базовыми станциями. Если на БС используется всенаправленная антенна, то граница территории, которую обслуживает одна БС, - окружность, в центре которой располагается БС (рис. 1.1,а). Границы трех соседних окружностей пересекаются в одной точке. Соединив точки пересечения окружностей, уточним границы территории, которую обслуживает каждая БС. Получается шестиугольник - сота.

Итак, сота - это территория, обслуживаемая одной БС при всенаправленных антеннах. Каждая БС поддерживает радиосвязь с абонентскими станциями, находящимися в своей соте. Во избежание взаимных помех соседние БС работают на разных частотах. Каждой соте присваивается частотная группа и для всей ССПСЭ составляется частотно- территориальный план.

Основой ЧТП является кластер. Кластер образован совокупностью соседних сот, в которых используются разные частотные группы. Частотные группы внутри кластера не повторяются. Число таких сот в кластере называется его размерностью. Все частотные каналы системы делят между БС, входящими в один кластер.

 

 

Рис. 1.1. Сотовые структуры: а — регулярная; б — секторная

Сотовая структура может быть двух типов:

- регулярная, использующая всенаправленные антенны (рис. 1.1,а);

- секторная на основе направленных антенн (рис. 1.1,б).

В качестве направленных антенн на БС используются секторные антенны. Получили распространение секторные антенны с шириной главного лепестка ДНА (a), равной 60, 90 или 120°. На рис. 1.1,б показаны соты с секторными антеннами при a = 120°. В этом случае сота делится на три сектора А, В, С. В каждом секторе устанавливается своя БС, причем в центре соты каждая БС работает на своей частоте. Частотные группы обозначены 1 А, 1В, …

5.2.2 Особенности построения цифровых ССПС с макросотовой структурой









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.