Почему пропадала радиосвязь с АМС на первых подлётах к Венере и Марсу?
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Почему пропадала радиосвязь с АМС на первых подлётах к Венере и Марсу?





Пока космические аппараты совершали полёты в пределах области земного тяготения, их траектории и манёвры рассчитывались, с приемлемой точностью, в геоцентрической системе отсчёта, а для допплеровских сдвигов несущей, при радиосвязи с ними, неплохо работала формула (1.8.1). Но это идиллическое согласие между традиционным теоретическим подходом и практикой рухнуло при первых же межпланетных полётах.

Как уже отмечалось выше (1.6), для корректного управления полётом, при расчётах тяги и расхода топлива требуется знать «истинную» скорость космического аппарата. Достоверно известно, что, в околоземном пространстве, этой скоростью является ГЕОцентрическая скорость. Не менее достоверно известно, что, в межпланетном пространстве, этой скоростью является ГЕЛИОцентрическая скорость – попробуйте иначе рассчитывать корректирующие манёвры, и аппарат улетит не туда, куда хотелось бы. Совершенно ясно, что на некотором удалении от Земли существует буферный слой, при переходе сквозь который ГЕОцентрическая скорость аппарата заменяется на ГЕЛИОцентрическую. О подробностях того, что происходит в этом слое, официальная наука говорить избегает. Видите ли, согласно закону всемирного тяготения, земное и солнечное тяготения действуют везде, складываясь друг с другом, но задача о движении пробного тела под действием притяжения всего-то к двум силовым центрам уже не имеет аналитического решения. Ой, неспроста это! Но математики выкрутились: изобрели способ рассчитывать траекторию аппарата методом численного интегрирования. Берут они исходное положение и исходный вектор скорости аппарата, учитывают ускорение, которое сообщают ему «силовые центры», и получают приращения положения и вектора скорости, приобретаемые в течение короткого промежутка времени – шага численного интегрирования. Таким образом рассчитывают малый отрезочек траектории, затем – следующий, и так далее. Здесь-то и кроется момент истины – с текущим вектором истинной скорости. Если вот тут он – ещё геоцентрический, а вон там – уже гелиоцентрический, то каков он в буферном слое? Не может ведь он быть на 70% геоцентрическим, а на 30% - гелиоцентрическим! Теоретики и тут выкрутились. Вместо того, чтобы честно сказать, что существует довольно резко выраженная граница, при переходе которой «истинная» скорость аппарата скачком изменяет систему для своего отсчёта, они ввели в обиход понятие сферы действия. Так, «сфера действия Земли относительно Солнца» - это область околоземного пространства, в которой, при расчёте свободного движения пробного тела, следует учитывать только земное тяготение, а солнечным тяготением следует полностью пренебречь; за пределами же этой области, наоборот, следует пренебрегать земным тяготением, ибо там полностью доминирует солнечное тяготение... Да разве это не принцип унитарного действия тяготения (1.5,1.6) в чистом виде? «Нет-нет, - пытаются уверить нас, - это всего лишь формальный приём, ради удобства вычисления траектории». Так, читаем у Левантовского: «При переходе космического аппарата через границу сферы действия приходится переходить от одного центрального поля тяготения к другому. В каждом поле тяготения движение рассматривается, естественно, как кеплерово, т.е. как происходящее по какому-либо из конических сечений – эллипсу, параболе или гиперболе, причём на границе сферы действия траектории по определённым правилам сопрягаются, «склеиваются» …. Специалистам отлично известны эти нехитрые «правила сопряжения», по которым одна кеплерова траектория в первой системе отсчёта скачкообразно переходит в другую кеплерову траекторию во второй системе отсчёта. Так, читаем дальше: «Единственный смысл понятия сферы действия заключается именно в границе разделения двух кеплеровых траекторий». Тут, впрочем, не сказано о двух системах отсчёта. Но это и так ясно: если в одной системе отсчёта движение аппарата – кеплерово, то в другой системе отсчёта, движущейся относительно первой с космической скоростью, то же самое движение аппарата – совсем не кеплерово. Значит, две различные кеплеровы траектории сшиваются лишь через скачкообразный физический переход из одной системы отсчёта в другую. Самое интересное, что именно через этот ломаный скачок, т.е. в вопиющем противоречии с законом всемирного тяготения, полёт аппарата рассчитывается ПРАВИЛЬНО!



У того же Левантовского доходчиво изложено, как делать этот правильный расчёт скачка «истинной» скорости аппарата. Пусть аппарат выведен на т.н. гомановскую траекторию полёта к планете-цели – наиболее энергетически выгодную. Такая траектория представляет собой, упрощённо, половину околосолнечного эллипса, перигелий и афелий которого касаются орбит Земли и планеты-цели. Если планета-цель более удалёна от Солнца, чем Земля, то, при подлёте к планете, гелиоцентрическая скорость аппарата меньше орбитальной скорости планеты. В этом случае переход границы области планетарного тяготения возможен лишь через её переднюю полусферу: планета догоняет аппарат. Чтобы найти вектор начальной скорости аппарата в планетоцентрической системе сразу после его входа в область тяготения планеты, следует из вектора скорости аппарата в гелиоцентрической системе вычесть вектор скорости орбитального движения планеты. Например, если Марс, орбитальная скорость которого равна 24 км/с, догоняет аппарат, движущийся в том же направлении со скоростью 20 км/с, то начальная скорость аппарата внутри области тяготения Марса будет равна 4 км/с и направлена противоположно вектору орбитальной скорости Марса. Таким образом, скачок модуля локально-абсолютной скорости (1.6) аппарата составит 16 км/с. Всё происходит аналогично и при влёте в область тяготения более близкой к Солнцу планеты, чем Земля – с той лишь разницей, что в этом случае переход границы происходит через её заднюю полусферу, поскольку здесь гелиоцентрическая скорость аппарата больше, чем орбитальная скорость планеты.

Теперь заметим, что скачок локально-абсолютной скорости аппарата (на десятки километров в секунду!) должен, согласно (1.8.2), вызвать скачок допплеровского сдвига несущей при радиосвязи с аппаратом – а ведь при узкополосности трактов у систем дальней космической связи, такой скачок выведет несущую далеко за пределы текущей рабочей полосы, и связь прервётся. Факты свидетельствуют о том, что именно по такому сценарию терялась связь с советскими и американскими автоматическими межпланетными станциями на всех первых подлётах к Венере и Марсу.

Из открытых источников (см., например, известно, что история первых запусков космических аппаратов к Венере и Марсу – это почти сплошная череда неудач: взрывов, «не выходов» на расчётную траекторию, аварий, отказов различных бортовых систем… Поступали так: в очередное «окно» во времени, благоприятное для запуска, космические аппараты запускали пачками – в надежде, что, хотя бы один из них выполнит запланированную программу. Но и это мало помогало. Открытые источники умалчивают о том, что, на подступах к планете-цели, аппарат подстерегала непонятная беда: радиосвязь с ним терялась, и он «пропадал без вести».

Вот несколько примеров. В 1965 г., 12 ноября к «утренней звезде» была запущена межпланетная автоматическая станция «Венера-2», а 16 ноября, вдогонку – «Венера-3». Перед сближением с планетой связь с «Венерой-2» была потеряна. По расчётам, станция прошла 27 февраля 1966 г. на расстоянии 24 тыс. км от Венеры. Что касается «Венеры-3», то 1 марта 1966 г. её спускаемый аппарат впервые достиг поверхности планеты. Однако, в сообщении ТАСС умолчали о том, что и с этой станцией связь была потеряна на подлёте к планете. А вот каким было начало «марсианской гонки». Межпланетная автоматическая станция «Марс-1»: запуск 01 ноября 1962 г., связь потеряна 21 марта 1963 г. Межпланетная автоматическая станция «Зонд-2»: запуск 30 ноября 1964 г., связь потеряна 5 мая 1965 г. Аналогичные вещи происходили и с американскими космическими аппаратами, причём один случай заслуживает особого внимания: «В июле 1969 г., когда «Маринер-7» достиг злополучного района космоса, где предыдущие аппараты пропали без вести, связь с ним была потеряна на несколько часов. После восстановления связи, к недоумению руководителей полёта, …его скорость в полтора раза превышала расчётную». Ясно, что восстановление связи произошло не само собой, а в результате удачной компенсации изменившегося допплеровского сдвига – поскольку именно по допплеровскому сдвигу судили о скорости аппарата. Лишь после того как научились, таким образом, восстанавливать пропадающую радиосвязь, один за другим посыпались успехи в межпланетной космонавтике.

Поскольку феномен скачков допплеровского сдвига, при пересечении аппаратом границы планетарного тяготения, совершенно не вписался в официальную теоретическую доктрину, представители официальной науки пытались замолчать этот феномен. Но – тщетно! Слишком широко известно, что на первых подлётах к Венере и Марсу пропадала связь с аппаратами. Мне лично доводилось беседовать со специалистами, которые, будучи верны научному долгу, до последнего отбрёхивались насчёт того, что связь, мол, пропадала вовсе не из-за каких-то там «скачков», а из-за того, что у аппаратов «сдыхало оборудование». Тогда спрашивается: почему различное оборудование у всех первых аппаратов «сдыхало» на одном и том же удалении от планеты? И почему впоследствии, как по мановению волшебной палочки, оно перестало «сдыхать» вовсе? Ответов на эти простые вопросы специалисты до сих пор не выработали.

А посему примем к сведению эти убийственные для релятивизма опытные факты – скачок «истинной» скорости космического аппарата при переходе через границу области планетарного тяготения, а также результирующее пропадание радиосвязи с аппаратом, которую можно восстановить с помощью вполне определённого сдвига несущей.

Кстати, у нас поначалу вызывал недоумение вопрос о том, почему же связь с аппаратами не терялась ещё на их вылете за границу земного тяготения. А разгадка, по-видимому, проста. Чтобы отправить аппарат по гомановской траектории (см. выше), нужно вывести его из области земного тяготения таким образом, чтобы его гелиоцентрическая скорость оказалась на требуемую величину больше, чем 30 км/с – для полёта к внешней планете, или, соответственно, меньше – для полёта к внутренней планете. Причём, пересечение границы земного тяготения желательно производить – опять же, из энергетических соображений – под острым углом, почти по касательной к этой границе. Совмещая эти требования, пересечение границы производили на одном из двух её участков – либо на ближайшем к Солнцу, либо на наиболее удалённом. При этом, несмотря на значительный (около 30 км/с) скачок локально-абсолютной скорости аппарата при пересечении границы, было совсем незначительно изменение проекции этой скорости на прямую «Земля-станция» - а, значит, согласно (1.8.2), было незначительно и соответствующее изменение допплеровского сдвига. Конечно, при влёте аппарата в область тяготения планеты-цели, ситуация была совершенно иная.

В продолжение этой сюжетной линии можно упомянуть ещё про т.н. гравитационные манёвры, с помощью которых изменяют параметры гелиоцентрической траектории космического аппарата – при пролёте его сквозь область действия тяготения той или иной планеты. Подобные гравитационные манёвры преподносят публике как высший космический пилотаж. Мы этого не отрицаем; мы только добавляем, что такой пилотаж стал возможен после того, как специалисты научились правильно отрабатывать вышеописанные пограничные эффекты.

 

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.