Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Как происходит ионизация вещества движущейся заряженной частицей.





Среднюю энергию, теряемую заряженной частицей на создание одной пары ионов, находят, деля полные потери энергии на число зарегистрированных ионов – например, по импульсу тока в ионизационной камере или пропорциональном счётчике.

В ранних моделях ионизационных потерь, рассматривался лишь ударный механизм ионизации. В нерелятивистской области энергий, наиболее вероятными считались столкновения, при которых ионизирующая частица выбивала из атома электрон с малой кинетической энергией, недостаточной для ионизации другого атома – и, лишь в небольшом проценте случаев, электроны, выбитые при первичной ионизации, имели энергию, достаточную для вторичной ионизации. Из этой модели механического выбивания электронов с очевидностью следовали выводы о зависимости средней энергии, теряемой на образование одной пары ионов (или иона плюс электрона), во-первых, от типа ионизирующей частицы – электрона, протона, a-частицы – и, во-вторых, от энергии ионизирующей частицы, поскольку чем больше эта энергия, тем большую кинетическую энергию может иметь выбитый электрон. На практике же всё оказалось иначе. «Наиболее важным экспериментальным фактом… является почти полная независимость энергии, расходуемой на образование пары ионов w, от энергии первичного излучения», причём «для a-частиц, протонов, электронов и т.п. она почти одинакова» – для различных газов она составляет 2-3 десятка эВ.

Считается, что качественное объяснение независимости w от энергии ионизирующей частицы дал Фано. Упрощённо говоря, если ионизирующая частица выбивает электрон, способный произвести одну вторичную ионизацию, то потеря энергии частицей составляет примерно 2w, но и ионизаций происходит две – так что, в среднем, потеря на одну ионизацию остаётся примерно постоянной. Эта бесхитростная арифметика не объясняет, однако, независимость w от типа ионизирующей частицы. Между тем, хорошо известно, что, по сравнению с протоном, электрон способен передать выбиваемому электрону гораздо большую часть своей энергии – до половины её. При начальной энергии ионизирующего электрона в 10 кэВ, первый выбитый электрон мог бы иметь энергию почти в 5 кэВ, второй – почти в 2.5 кэВ, и т.д. Тогда ионизирующие электроны должны были бы тормозиться в газах на порядки эффективнее, чем протоны. Однако, известно, что «при малых скоростях потери энергии на единицу пути протона и электрона с одинаковыми скоростями не сильно отличаются друг от друга». А вот конкретные цифры: «в случае ионизации воздуха ударом электрона, протона и a-частицы…[энергии, соответствующие максимуму ионизации,] составляют 110 эВ (e), 1.3×105 эВ (p) и 1.8×106 эВ (a), т.е. различаются соответственно на три и четыре порядка, значения же скорости равны 7.5×108 см/сек (e), 5.0×108 см/сек (p) и 8.0×108 см/сек (a), т.е. имеют одинаковый порядок величины… можно заключить, что положение максимума вероятности ионизации ударом быстрой частицы определяется скорее не величиной её энергии, а её скоростью».



Это поразительное явление не объяснила и модель пролётной кулоновской передачи импульса выбиваемому электрону: соответствующая формула Бёте сконструирована лишь для случаев ионизирующих частиц с массой, много большей массы электрона. А ведь ионизирующие частицы различаются ещё и по заряду. В формулу Бёте входит квадрат числа элементарных зарядов, которое несёт ионизирующая частица – и a-частица, несущая два элементарных заряда, должна была бы иметь в четыре раза большие ионизационные потери, чем протон. Как уже цитировалось выше, ничего подобного на опыте не наблюдается. Кроме того, до сих пор не объяснён следующий феномен: по мере торможения ионизирующей частицы в веществе, её ионизирующая способность возрастает: создаётся всё больше ионов на единицу длины пути – вплоть до достижения максимума, после чего ионизирующая способность частицы быстро сходит на нет. Наконец, загадочным остаётся тот факт, что средние потери на ионизацию, «вопреки наивным ожиданиям, меньше всего для инертных газов, которые имеют наибольшие энергии ионизации». Таким образом, традиционный подход не приводит нас даже к элементарному пониманию механизмов ионизации вещества движущимися заряженными частицами.

На наш взгляд, нерелятивистская заряженная частица ионизирует вещество двумя главными способами. Первый из них – это, как и считали ранние исследователи, ударная ионизация. Однако, ударной ионизацией не объяснить, для подавляющего большинства случаев, картину распределения образующихся ионов вдоль траектории частицы. Речь идёт о случаях, когда ионы оказываются распределены по створу, характерный поперечный размер которого несопоставимо больше центральной «жилки» с поперечником, соответствующим сечению ударной ионизации – причём такая картина получается не только в газах, но и в конденсированных средах, например, в фотоэмульсиях. Эту картину не может дать вторичная ионизация. Действительно, пусть максимальная энергия, которую способна передать электрону налетающая тяжёлая частица, есть 2meV , где me – масса электрона, V – скорость налетающей частицы. Тогда протон с энергией 500 кэВ передавал бы электрону не более 270 эВ. Этого хватило бы, в лучшем случае, на десяток вторичных ионизаций – причём, по мере торможения протона, эта цифра уменьшалась бы. В действительности же, в треках низкоэнергичных протонов (не говоря уже о треках мезонов) ионов на 1-2 порядка больше за пределами центральной «жилки», чем в ней самой – и, по мере торможения протона, число этих «запредельных» ионов на единицу длины увеличивается. Таким образом, нам придётся допустить, что работает какой-то механизм бесстолкновительной ионизации – причём он не основан на кулоновском взаимодействии, поскольку средние потери на ионизацию не зависят от числа элементарных зарядов у ионизирующей частицы (см. выше).

Мы представляем этот механизм, качественно, следующим образом. Как отмечалось выше (5.3), заряженная частица индуцирует в окружающем веществе статические зарядовые разбалансы. Все эти разбалансы не могут иметь один и тот же знак, поскольку сумма их эффективных зарядов не может превысить по модулю заряд индуцирующей частицы. Мы полагаем, что, в последовательных сферических слоях вокруг частицы, знаки индуцированных зарядовых разбалансов чередуются – эффективный электрический заряд результирующего «комплекса» равен частному от деления заряда частицы на диэлектрическую проницаемость среды. При движении этого «комплекса», накрываемые им молекулы среды попадают то в «отрицательный», то в «положительный» слои. Поэтому статические разбалансы, индуцируемые в них, являются знакопеременными – с периодом, примерно равным отношению удвоенной толщины слоя к скорости движения «комплекса». Эти дополнительные разбалансы могут нарушить штатный циклический процесс, обеспечивающий химическую связь (5.7), что приведёт к диссоциации молекулы. Логично допустить, что эффективность такой диссоциации будет наиболее вероятна при совпадении периода индуцируемых разбалансов и периода кванта возбуждения, которым циклически обмениваются связанные атомы (5.7) – при этом кинетическая энергия заряженной частицы будет особенно эффективно «тратиться» на диссоциацию молекул. Для случая газовой среды, в качестве грубой оценки толщины одного слоя в «комплексе» можно взять длину среднего пробега молекул lсвоб. Тогда для воздуха при нормальных условиях, у которого lсвоб=6.2×10-8 м, и для периода t=3.2×10-14 с, соответствующего максимуму равновесного спектра (5kT) при T=300оК, мы получаем для скорости «комплекса», дающей максимум ионизации, величину 2lсвоб/t=3.9×106 м/с, которая по порядку совпадает с экспериментально найденными значениями (см. выше).

Как можно видеть, на основе нашего подхода понятно – по крайней мере, качественно – почему средние потери на ионизацию не зависят ни от энергии нерелятивистской заряженной частицы, ни от её типа. Становится понятно, почему ионизирующие способности электрона и позитрона идентичны – благодаря чему, собственно, позитрон и был открыт Андерсеном. Становится понятно, почему одинаковы потери на единицу пути у протона и электрона, которые имеют одинаковые скорости – именно скорости, а не энергии. Становится понятно, почему ионизирующая способность заряженной частицы увеличивается по мере её торможения. Наконец, вернёмся к вопросу о том, почему потери на ионизацию в инертных газах наименьшие, хотя энергии ионизации у них наибольшие.

Этот парадоксальный факт мы объясняем тем, что у атомов инертных газов нет валентных электронов, поэтому в инертных газах заряженная частица не растрачивает свою энергию на индуцирование зарядовых разбалансов. Главным механизмом ионизации здесь является именно ударный. Поэтому здесь значения ионизационных потерь близки к реальным затратам на ионизацию – в отличие от случаев молекулярных сред, где не каждый индуцированный зарядовый разбаланс приводит к ионизации, отчего в таких средах средние ионизационные потери больше реальных затрат на ионизацию.

Едва ли можно сомневаться в том, что движущаяся заряженная частица, индуцируя статические зарядовые разбалансы в молекулярной среде и ионизируя её, повышает её температуру. Этот вывод сыграет ключевую роль в вопросе об источнике тепла реакций горения (5.11).

 

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.