Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Метод кинетостатики для материальной точки.





Основные понятия и законы динамики

Динамикаэто раздел механики, в котором изучают движение тел под действием приложенных к ним сил.

В биомеханике также рассматривают взаимодействие между телом человека и внешним окружением, между звеньями тела, между двумя людьми (например, в единоборствах). В результате возникают силы, которые и являются количественной мерой этих взаимодействий.

При изучении величин, которые характеризуются не только величиной, но и направлением (например, скорость, ускорение, сила и т. п.) применяют их векторное изображение.

Векторнаправленный прямолинейный отрезок (стрелка) рис. 1.

Два вектора считаются равными лишь в том случае, если у них одинаковы и длины и направления (то есть они параллельны и ориентированы в одну сторону). С изменением ориентации меняется знак вектора (на рис.1 b = а; с = - а).

Правила векторной алгебры отражают физические свойства векторных величин. Так в соответствии с тем, что равнодействующая двух сил находится по правилу параллелограмма, суммой двух векторов (a и b), определяется новый вектор (с = а + b), изображаемый диагональю параллелограмма, стороны которого – векторы-слагаемые, рис. 2.

Вычитание определяется как действие, обратное сложению. Кроме вектора в биомеханике используется ещё и термин, носящий название «скаляр» (скалярные величины).

Скалярвеличина, каждое значение которой (в отличие от вектора) может быть выражено одним числом, вследствие чего совокупность значений можно изобразить на линейной шкале (скале – отсюда и название). Скалярными величинами являются: длина, площадь, температура и т. д.

Скалярным произведением (а۰b) двух векторов (а и b) называется число (скаляр), равное произведению длин этих векторов, на косинус угла, образованных их направлениями, то есть |а| ۰ |b| ۰ cos φ, см. рис. 3.

Прямая, вдоль которой направлена сила, называется линия действия силы. Сила полностью определена, если заданы её величина, направление и точка приложения. Если на элементы биомеханической системы тела человека действует несколько сил (F1, F2,...Fn), то их можно заменить одной силой, равной их векторной сумме: FR = Σ Fi. Такая сила называется равнодействующей.

Например, на прыгуна в длину действует сила тяжести (mg) и сила сопротивления воздуха (Fс), рис. 4. Ускорение (отрицательное) создаёт их равнодействующая сила (Fр).

Движения биомеханической системы тела человека подчиняются механике Ньютона. Следовательно, три основных закона этой механики определяют характер движения, так как несмотря на биологическую природу энергообеспечения движения, тело является механической системой и подчиняется всем закономерностям, которые связаны с движением материальных объектов на Земле.

Первый закон Ньютона (закон инерции). Любое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешнее воздействие не изменит это состояние.

Прямолинейное равномерное движение материального тела называется инерциональным (или движением по инерции). Инерцияэто свойство материального тела оказывать сопротивление изменению скорости его движения (как по величине, так и по направлению). Инертностьнеотъемлемое свойство материи. Такое сопротивление возможно только потому, что тела обладают определённой массой, которую считают количественной мерой инертности.

Массаколичественная мера инертности тела. Единица измерения массы в СИ называется килограмм (кг).

Первый закон Ньютона – достаточно идеализированное представление о движении, поскольку тело может двигаться прямолинейно и равномерно только в отсутствии любых сил. В реальности на двигающееся тело всегда оказывают влияние различные силы (силы сопротивления воздуха, силы трения и др.), чьё воздействие приводит к тому, что движущееся тело в конце концов останавливается. Это не означает, что первый закон Ньютона неверен: просто движение, если действие сил не исключить, приводит к изменению состояния тела и, в частности, к его переходу в состояние покоя.

Векторная величина, равная произведению массы тела на ускорение и направленная в сторону, противоположную ускорению по величине или направлению данного тела под воздействием внешних сил, называется силой инерции: Fи = - m•aс.

Изменение скорости тела обусловлено воздействием на него других тел. Воздействие тем интенсивнее, чем больше созданное им ускорение. С другой стороны, у тела с большей массой ускорение меньше (то есть, его скорость изменить труднее). Поэтому измерять воздействие на тело со стороны всех других тел принято произведением массы тела на сообщённое ему ускорение. Эту меру воздействия называют силой.

Силой, действующей на тело со стороны других тел, называется векторная величина, равная произведению массы тела на его ускорение.

Единица измерения в СИ называется «ньютон» - Н.

Если формулу F = m • a преобразовать:

,

то получим второй закон Ньютона.

Второй закон Ньютона. Ускорение, с которым движется тело, прямо пропорционально действующей на него силе, обратно пропорционально массе тела и по направлению совпадает с направлением действия силы

Соотношение между равнодействующей всех внешних сил и ускорением, которое она сообщает ему, можно преобразовать к виду, который оказывается полезным при решении многих задач в биомеханике:

Выражение в левой части уравнения называется импульсом силы, в правой части уравнения – называется импульсом тела.

Импульсом тела или количеством движения (Р) называется произведение массы (m) на скорость движения тела (V):

, Размерность в СИ – кг•м/с

Импульсом силы называется произведение значения силы на промежуток времени, в течение которого она действовала на материальное тело.

На основе приведённых определений можно представить в следующей словесной формулировке: изменение количества движения материального тела равно импульсу силы:

Третий закон Ньютона. Силы, с которыми материальные тела действуют друг на друга, равны по величине, противоположны по направлению и направлены по прямой, проходящей через эти тела.

F1 = - F2

Этот закон показывает, что взаимодействие – это действие одного тела на второе и равное ему действие второго тела на первое. Следовательно, источником силы для первого тела является второе, и поскольку силы действия и противодействия приложены к разным телам, их нельзя складывать, а действующие силы – заменять равнодействующей.

Человек, совершая двигательные действия, участвует в сложном движении, которое состоит из более простых – поступательного и вращательного. Для каждого из них существуют отличающиеся друг от друга характеристики.

 

 

СИЛЫ ИНЕРЦИИ

Силы инерции — силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где
— сила, действующая на тело со стороны других тел;

— сила инерции, действующая на тело относительно поступательно движущейся НСО. — ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;

— центробежная сила инерции, действующая на тело относительно вращающейся НСО. — угловая скорость НСО относительно ИСО, — расстояние от тела до центра вращения;

— кориолисова сила инерции, действующая на тело, движущееся со скоростью относительно вращающейся НСО. — угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).

ВЫВОД ФОРМУЛЫ СИЛЫ КОРИОЛИСА

Пусть, материальная точка, движущаяся относительно вращающейся системы отсчета (ВСО) по прямой, проходящей через ось вращения, переместилась из точки A в точку B.

— скорость материальной точки относительно ВСО.
Изменение относительной скорости движения материальной точки после перемещения:
.
Переносные скорости материальной точки в точках A и B:
,
.
Составляющие перемещения материальной точки:
,
.
Изменение абсолютной (относительно ИСО) скорости материальной точки:
,
,
,
,
.
Ускорение материальной точки относительно ИСО:
.
Сила инерции направлена в сторону противоположную ускорению и равна по величине силе, вызывающей ускоренное движение материальной точки относительно ИСО:

, где
— центробежная сила инерции;
— кориолисова сила инерции (сила Кориолиса).
Выражение для силы инерции не изменится, если материальная точка будет двигаться перпендикулярно прямой, проходящей через ось вращения — убедитесь самостоятельно!

 

 

Метод кинетостатики.

В технических задачах, не связанных с необходимостью интегрирования дифференциальных уравнений движения материальных объектов, иногда удобно пользоваться так называемым методом кинетостатики. Этот метод наиболее употребителен в случаях, когда требуется в постановке прямой задачи динамики определить неизвестную часть сил (как правило, силы реакции), участвующих в движении материального объекта.

Метод кинетостатики позволяет решать задачи динамики (неравномерного движения) методом статики. Для этой цели инерционные члены, стоящие в левой части дифференциальных уравнений переносятся в правую часть и их рассматривают как условные силы или условные моменты. Метод кинетостатики в своей основе предложил Даламбер и эти условные силы и условные моменты называют:

- силами инерции Даламбера

- моментами сил инерции Даламбера

Рассмотрим применение метода кинетостатики (принципа Даламбера) для материальной точки и механической системы.

Понятие трения

Как известно, в природе не существует абсолютно гладких и абсолютно твердых тел, поэтому при перемещении одного тела по поверхности другого возникает сопротивление, которое называется трением.

Трение скольжения

Трением скольжения называется трение движения, при котором скорости тел в точке касания различны по значению и (или) направлению.
Трение скольжения, как и трение покоя, обусловлено, прежде всего, шероховатостью и деформацией поверхностей, а также наличием молекулярного сцепления прижатых друг к другу тел. Трение скольжения сопровождается изнашиванием, т. е. отделением или остаточной деформацией материала, а также нагревом трущихся поверхностей тел (остаточной называется деформация, не исчезающая после прекращения действия внешних сил).
Трение характеризуется силой трения.
Сила трения есть сила сопротивления относительному перемещению двух тел при трении.

Рассмотрим тело, лежащее на горизонтальной шероховатой плоскости (см. рисунок 1).
Сила тяжести G уравновешивается нормальной реакцией плоской поверхности N. Если к телу приложить небольшую движущую силу P, то оно не придет в движение, так как эта сила будет уравновешиваться силой трения Fтр, которая является, таким образом, составляющей реакции опорной плоскости, направленной вдоль плоскости в противоположную перемещению сторону.

Если постепенно увеличивать сдвигающую силу P, то до определенного ее значения тело будет оставаться в покое, а затем придет в движение.
Очевидно, что сила трения в состоянии покоя может изменяться в зависимости от степени микросмещения может изменяться от нуля до какого-то максимального значения Fmaxтр, причем в промежутке между нулем и максимальным значением сила трения Fтр по модулю всегда равна сдвигающей силе P.
Максимальное значение сила трения покоя имеет в момент начала относительного движения. Это значение называется наибольшей силой трения покоя или просто силой трения покоя.

Сила трения всегда направлена в сторону, противоположную направлению относительного движения тела.

В XVIII веке французские ученые Гийом Атонтон (1663-1705), а затем Шарль Огюстен Кулон (1736-1806) провели фундаментальные исследования в области трения, и на основе их сформулировали три основных закона трения скольжения, которые обычно называют законами Кулона.

***

Й закон Кулона

Й закон Кулона

Й закон Кулона

Трение качения

Работа, мощность, энергия



 

Пример решения задачи

Задача: рабочий вращает рукоятку лебедки силой F = 200 Н, перпендикулярной радиусу вращения.
Найти работу, затраченную в течение времени t = 25 секунд, если длина рукоятки r = 0,4 м, а ее угловая скорость ω = π/3 рад/с.

Решение.
Прежде всего определим угловое перемещение φ рукоятки лебедки за 25 секунд:

φ = ωt = (π/3)×25 = 26,18 рад.

Далее воспользуемся формулой для определения работы силы при вращательном движении:

W = Tφ = Frφ = 200×0,4×26,18 ≈ 2100 Дж ≈ 2,1 кДж.

***

Мощность

Работа, совершаемая какой-либо силой, может быть за различные промежутки времени, т. е. с разной скоростью. Чтобы охарактеризовать, насколько быстро совершается работа, в механике существует понятие мощности, которую обычно обозначают буквой P.

Понятие об энергии и КПД

Способность тела при переходе из одного состояния в другое совершать работу называется энергией. Энергия есть общая мера различных форм движения материи.

В механике для передачи и преобразования энергии применяются различные механизмы и машины, назначение которых – выполнение заданных человеком полезных функций. При этом энергия, передаваемая механизмами, называется механической энергией, которая принципиально отличается от тепловой, электрической, электромагнитной, ядерной и других известных видов энергии. Виды механической энергии тела мы рассмотрим на следующей странице, а здесь лишь определимся с основными понятиями и определениями.

При передаче или преобразовании энергии, а также при совершении работы, имеют место потери энергии, поскольку механизмы и машины, служащие для передачи или преобразования энергии преодолевают различные силы сопротивления (трения, сопротивления окружающей среды и т. п.). По этой причине часть энергии при передаче безвозвратно теряется и не может быть использована для выполнения полезной работы.

Основные понятия и законы динамики

Динамикаэто раздел механики, в котором изучают движение тел под действием приложенных к ним сил.

В биомеханике также рассматривают взаимодействие между телом человека и внешним окружением, между звеньями тела, между двумя людьми (например, в единоборствах). В результате возникают силы, которые и являются количественной мерой этих взаимодействий.

При изучении величин, которые характеризуются не только величиной, но и направлением (например, скорость, ускорение, сила и т. п.) применяют их векторное изображение.

Векторнаправленный прямолинейный отрезок (стрелка) рис. 1.

Два вектора считаются равными лишь в том случае, если у них одинаковы и длины и направления (то есть они параллельны и ориентированы в одну сторону). С изменением ориентации меняется знак вектора (на рис.1 b = а; с = - а).

Правила векторной алгебры отражают физические свойства векторных величин. Так в соответствии с тем, что равнодействующая двух сил находится по правилу параллелограмма, суммой двух векторов (a и b), определяется новый вектор (с = а + b), изображаемый диагональю параллелограмма, стороны которого – векторы-слагаемые, рис. 2.

Вычитание определяется как действие, обратное сложению. Кроме вектора в биомеханике используется ещё и термин, носящий название «скаляр» (скалярные величины).

Скалярвеличина, каждое значение которой (в отличие от вектора) может быть выражено одним числом, вследствие чего совокупность значений можно изобразить на линейной шкале (скале – отсюда и название). Скалярными величинами являются: длина, площадь, температура и т. д.

Скалярным произведением (а۰b) двух векторов (а и b) называется число (скаляр), равное произведению длин этих векторов, на косинус угла, образованных их направлениями, то есть |а| ۰ |b| ۰ cos φ, см. рис. 3.

Прямая, вдоль которой направлена сила, называется линия действия силы. Сила полностью определена, если заданы её величина, направление и точка приложения. Если на элементы биомеханической системы тела человека действует несколько сил (F1, F2,...Fn), то их можно заменить одной силой, равной их векторной сумме: FR = Σ Fi. Такая сила называется равнодействующей.

Например, на прыгуна в длину действует сила тяжести (mg) и сила сопротивления воздуха (Fс), рис. 4. Ускорение (отрицательное) создаёт их равнодействующая сила (Fр).

Движения биомеханической системы тела человека подчиняются механике Ньютона. Следовательно, три основных закона этой механики определяют характер движения, так как несмотря на биологическую природу энергообеспечения движения, тело является механической системой и подчиняется всем закономерностям, которые связаны с движением материальных объектов на Земле.

Первый закон Ньютона (закон инерции). Любое материальное тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока внешнее воздействие не изменит это состояние.

Прямолинейное равномерное движение материального тела называется инерциональным (или движением по инерции). Инерцияэто свойство материального тела оказывать сопротивление изменению скорости его движения (как по величине, так и по направлению). Инертностьнеотъемлемое свойство материи. Такое сопротивление возможно только потому, что тела обладают определённой массой, которую считают количественной мерой инертности.

Массаколичественная мера инертности тела. Единица измерения массы в СИ называется килограмм (кг).

Первый закон Ньютона – достаточно идеализированное представление о движении, поскольку тело может двигаться прямолинейно и равномерно только в отсутствии любых сил. В реальности на двигающееся тело всегда оказывают влияние различные силы (силы сопротивления воздуха, силы трения и др.), чьё воздействие приводит к тому, что движущееся тело в конце концов останавливается. Это не означает, что первый закон Ньютона неверен: просто движение, если действие сил не исключить, приводит к изменению состояния тела и, в частности, к его переходу в состояние покоя.

Векторная величина, равная произведению массы тела на ускорение и направленная в сторону, противоположную ускорению по величине или направлению данного тела под воздействием внешних сил, называется силой инерции: Fи = - m•aс.

Изменение скорости тела обусловлено воздействием на него других тел. Воздействие тем интенсивнее, чем больше созданное им ускорение. С другой стороны, у тела с большей массой ускорение меньше (то есть, его скорость изменить труднее). Поэтому измерять воздействие на тело со стороны всех других тел принято произведением массы тела на сообщённое ему ускорение. Эту меру воздействия называют силой.

Силой, действующей на тело со стороны других тел, называется векторная величина, равная произведению массы тела на его ускорение.

Единица измерения в СИ называется «ньютон» - Н.

Если формулу F = m • a преобразовать:

,

то получим второй закон Ньютона.

Второй закон Ньютона. Ускорение, с которым движется тело, прямо пропорционально действующей на него силе, обратно пропорционально массе тела и по направлению совпадает с направлением действия силы

Соотношение между равнодействующей всех внешних сил и ускорением, которое она сообщает ему, можно преобразовать к виду, который оказывается полезным при решении многих задач в биомеханике:

Выражение в левой части уравнения называется импульсом силы, в правой части уравнения – называется импульсом тела.

Импульсом тела или количеством движения (Р) называется произведение массы (m) на скорость движения тела (V):

, Размерность в СИ – кг•м/с

Импульсом силы называется произведение значения силы на промежуток времени, в течение которого она действовала на материальное тело.

На основе приведённых определений можно представить в следующей словесной формулировке: изменение количества движения материального тела равно импульсу силы:

Третий закон Ньютона. Силы, с которыми материальные тела действуют друг на друга, равны по величине, противоположны по направлению и направлены по прямой, проходящей через эти тела.

F1 = - F2

Этот закон показывает, что взаимодействие – это действие одного тела на второе и равное ему действие второго тела на первое. Следовательно, источником силы для первого тела является второе, и поскольку силы действия и противодействия приложены к разным телам, их нельзя складывать, а действующие силы – заменять равнодействующей.

Человек, совершая двигательные действия, участвует в сложном движении, которое состоит из более простых – поступательного и вращательного. Для каждого из них существуют отличающиеся друг от друга характеристики.

 

 

СИЛЫ ИНЕРЦИИ

Силы инерции — силы, обусловленные ускоренным движением неинерциальной системы отсчета (НСО) относительно инерциальной системы отсчета (ИСО). Основной закон динамики для неинерциальных систем отсчета: , где
— сила, действующая на тело со стороны других тел;

— сила инерции, действующая на тело относительно поступательно движущейся НСО. — ускорение НСО относительно ИСО. Она появляется, например, в самолете при разгоне на взлетной полосе;

— центробежная сила инерции, действующая на тело относительно вращающейся НСО. — угловая скорость НСО относительно ИСО, — расстояние от тела до центра вращения;

— кориолисова сила инерции, действующая на тело, движущееся со скоростью относительно вращающейся НСО. — угловая скорость НСО относительно ИСО (вектор направлен вдоль оси вращения в соответствии с правилом правого винта).

ВЫВОД ФОРМУЛЫ СИЛЫ КОРИОЛИСА

Пусть, материальная точка, движущаяся относительно вращающейся системы отсчета (ВСО) по прямой, проходящей через ось вращения, переместилась из точки A в точку B.

— скорость материальной точки относительно ВСО.
Изменение относительной скорости движения материальной точки после перемещения:
.
Переносные скорости материальной точки в точках A и B:
,
.
Составляющие перемещения материальной точки:
,
.
Изменение абсолютной (относительно ИСО) скорости материальной точки:
,
,
,
,
.
Ускорение материальной точки относительно ИСО:
.
Сила инерции направлена в сторону противоположную ускорению и равна по величине силе, вызывающей ускоренное движение материальной точки относительно ИСО:

, где
— центробежная сила инерции;
— кориолисова сила инерции (сила Кориолиса).
Выражение для силы инерции не изменится, если материальная точка будет двигаться перпендикулярно прямой, проходящей через ось вращения — убедитесь самостоятельно!

 

 

Метод кинетостатики.

В технических задачах, не связанных с необходимостью интегрирования дифференциальных уравнений движения материальных объектов, иногда удобно пользоваться так называемым методом кинетостатики. Этот метод наиболее употребителен в случаях, когда требуется в постановке прямой задачи динамики определить неизвестную часть сил (как правило, силы реакции), участвующих в движении материального объекта.

Метод кинетостатики позволяет решать задачи динамики (неравномерного движения) методом статики. Для этой цели инерционные члены, стоящие в левой части дифференциальных уравнений переносятся в правую часть и их рассматривают как условные силы или условные моменты. Метод кинетостатики в своей основе предложил Даламбер и эти условные силы и условные моменты называют:

- силами инерции Даламбера

- моментами сил инерции Даламбера

Рассмотрим применение метода кинетостатики (принципа Даламбера) для материальной точки и механической системы.

Метод кинетостатики для материальной точки.

Пусть несвободная материальная точка с массой m под действием задаваемых сил и сил реакций связей движется с некоторым ускорением .

Следовательно можно записать:

Перенесём инерционный член в правую часть. Получим:

Обозначим ; таким образом (1)

Уравнение (1) по своему характеру является уравнением равновесия сил и может быть решено методами статики. Замечаем, что условно введённая сила инерции направлена по линии ускорения в противоположную сторону.

Сформулируем метод кинетостатики для материальной точки:

При неравномерном движении материальной точки в каждый момент времени геометрическая сумма задаваемых сил, сил реакции связей и силы инерции, условно приложенной к точке, взаимно уравновешена(равна нулю).

Обычно векторное уравнение (1) записывают в проекциях на оси координат, например:







Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.