Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Метод интегрирования по частям.





1. Метод интегрирования по частям основан на применении формулы дифференцирования произведения двух функций.

Теорема 2. Пусть функции u (x) и v (x) определены и дифференцируемы на некотором промежутке Х и пусть функция u’ (x) v (x) имеет первообразную на этом промежутке. Тогда на промежутке Х функция u (x) v’ (x) также имеет первообразную и справедлива формула

Эта формула называется формулой интегрирования по частям в неопределенном интеграле. Метод интегрирования по частям рекомендуется использовать для нахождения интегралов от функции

и т. д., где n, k – целые положительные постоянные, а также отыскание некоторых интегралов от функций, содержащих обратные тригонометрические и логарифмические функции. В качестве функции u (x) принимается функция которая дифференцированием упрощается или трансцендентные функции ln x, arctg x, arcsin x.

Пример 1.

 

Пример 2.

 

Пример 3.

∫ х2 ех dх = u = х2 Þ du = 2хdх = х2 ех - 2∫ хех dх =

dv = ех dх Þ v = ∫ ех dх = ех

 

= u = х Þ du = dх = х2 е2 – 2(хех - ∫ ех dх) = х2 ех – 2хех +

dv = ех dх Þ v =∫ ех dх = ех

 

+ 2 ех + с = е22 – 2х + 2) + с

Пример 4.

∫ х cos 2х dх = u = х Þ du = dх =

dv = cos 2х dх Þ v = ∫ cos 2х dх = ½ sin 2х

= х sin 2х - ∫   sin 2х dх = х sin 2х +   сos 2х + с

Определенный интеграл. Вычисление определенного интеграла. Геметрический смысл определенного интеграла

Понятие определенного интеграла

Пусть функция определена на отрезке , . Выполним следующие операции:

1) разобьем отрезок точками на n частичных отрезков ;

2) в каждом из частичных отрезков , выберем произвольную точку и вычислим значение функции в этой точке: ;

3) найдем произведения , где – длина частичного отрезка , ;

4) составим сумму

, (1)

которая называется интегральной суммой функции y = f(x) на отрезке [а, b]. С геометрической точки зрения интегральная сумма представляет собой сумму площадей прямоугольников, основаниями которых являются частичные отрезки , а высоты равны соответственно (рис. 1). Обозначим через длину наибольшего частичного отрезка ;

5) найдем предел интегральной суммы, когда .

 

Рис. 1

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка на частичные отрезки, ни от выбора точек в них, то этот предел называется определенным интегралом от функции на отрезке и обозначается .

Таким образом, .

В этом случае функция называется интегрируемой на . Числа а и b называются соответственно нижним и верхним пределами интегрирования, – подынтегральной функцией, – подынтегральным выражением, – переменной интегрирования; отрезок называется промежутком интегрирования.

Теорема 1. Если функция непрерывна на отрезке , то она интегрируема на этом отрезке.

Геометрический смысл определенного интеграла

Пусть на отрезке задана непрерывная неотрицательная функция . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f(x), снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

 

Рис. 2

Определенный интеграл от неотрицательной функции с геометрической точки зрения численно равен площади криволинейной трапеции, ограниченной сверху графиком функции , слева и справа – отрезками прямых и , снизу – отрезком оси Ох.

Основные свойства определенного интеграла

1. Значение определенного интеграла не зависит от обозначения переменной интегрирования: .

2. Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

3. Если , то, по определению, полагаем

4. Постоянный множитель можно выносить за знак определенного интеграла:

5. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

.

6. Если функция интегрируема на и , то

.

7. (теорема о среднем). Если функция непрерывна на отрезке , то на этом отрезке существует точка , такая, что .

Формула Ньютона–Лейбница

Вычисление определенных интегралов через предел интегральных сумм связано с большими трудностями. Поэтому существует другой метод, основанный на тесной связи, существующей между понятиями определенного и неопределенного интегралов.

Теорема 2. Если функция непрерывна на отрезке и – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

, (2)

которая называется формулой Ньютона–Лейбница. Разность принято записывать следующим образом:

,

где символ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

.

Нахождение определенных интегралов с помощью формулы Ньютона-Лейбница осуществляется в два этапа: на первом этапе находят некоторую первообразную для подынтегральной функции ; на втором – находится разность значений этой первообразной на концах отрезка .

Пример 1. Вычислить интеграл .

Решение. Для подынтегральной функции произвольная первообразная имеет вид . Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления ин-
теграла возьмем первообразную, имеющую наиболее простой вид: . Тогда .

Пример 2. Вычислить интеграл .

Решение. По формуле Ньютона-Лейбница имеем:

.







Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.