Цилиндрическая прямозубая зубчатая передача
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Цилиндрическая прямозубая зубчатая передача





4.4.1 Общие сведения
4.4.2 Силы в зацеплении
4.4.3 Расчёт на контактную прочность рабочих поверхностей зубьев
4.4.4 Расчёт зубьев на изгиб


В результате изучения студент должен знать:
- формулы для расчета сил в зацеплении;
- формулы для расчета прямозубых передач на контактную прочность и изгиб.

 

Общие сведения

Цилиндрическая прямозубая зубчатая передача относится к передачам зацеплением непосредственного контакта рис.2.3.11. Применяется при окружных скоростях .

;

Рисунок 2.3.11 Наружное а) и внутреннее б) зацепление

 


Силы в зацеплении

Силы в зацеплении определяют в полюсе зацепления. На шестерню действует вращательный момент, который создаёт распределённую по контактным линиям зуба колеса нагрузку. Эту нагрузку заменяют равнодействующей силой , направленной по линии зацепления nn и приложенной в полюсе. Силами трения в зацеплении пренебрегают, так как они малы. Силу раскладывают на окружную Ft и радиальную Fr (рис. 2.3.12):

;

Рисунок 2.3.12 Схема действия сил в зубчатом зацеплении

 


(2.3.14)

(2.3.15)

 

Такое разложение силы на составляющие удобно для расчёта зубьев и валов. На ведомом колесе направление силы Ft совпадает с направлением вращения, а на ведущем – противоположно ему, т.е. силы на ведущем и ведомом колёсах всегда направлены против действия соответствующих моментов. Радиальные силы Fr направлены к осям вращения колёс и создают "распор" в передаче. Расчет на прочность зубчатых колес проводят по двум условиям прочности: по контактным напряжениям и по напряжениям изгиба. При расчете по контактным напряжениям для всех коэффициентов применяется индекс "Н", по напряжениям изгиба – индекс "F".




Расчёт на контактную прочность рабочих поверхностей зубьев

Расчёт на контактную прочность рабочих поверхностей зубьев является основным критерием работоспособности зубчатых передач.

Расчёт производят при контакте зубьев в полюсе зацепления П. Контакт зубьев рассматривают как контакт двух цилиндров с радиусом р1 и р2. При этом наибольшие контактные напряжения определяют по формуле Герца:

(2.3.16)

Расчет по контактной прочности сводится к проверке условия . После преобразования формулы Герца для контакта цилиндрических поверхностей получают формулу для определения межосевого расстояния


(2.3.17)

где Т2 – вращающий момент на тихоходном валу, Н м;
u - передаточное число;
Ка = 49,5 МПа – для прямозубых колес;
- коэффициент ширины колеса по межцентровому расстоянию, его можно определить по формуле
где - выбирается из справочных таблиц, - допускаемое контактное напряжение,
где - коэффициент долговечности,
- предел контактной выносливости, определяется для заданного материала из таблиц,
= 1,1- 1,3 - допускаемый коэффициент запаса прочности,
- базовое число циклов нагружения,
- расчетное число циклов нагружения,
Lh – полный ресурс в час.

Определив геометрические размеры передачи, ее проверяют на контактную прочность по формуле:

(2.3.18)

где - коэффициент нагрузки при расчете по контактным напряжениям,
- коэффициент нагрузки, учитывающий распределение нагрузки между зубьями (для прямозубых передач =1),
- коэффициент нагрузки, учитывающий неравномерность распределения нагрузки по ширине зубчатого венца (по длине контактных линий),
=1,25 - коэффициент нагрузки, учитывающий дополнительные динамические нагрузки.

Расчёт зубьев на изгиб

Поломка зубьев связана с напряжениями изгиба, вследствие усталости материала от длительно действующих нагрузок. Расчет на изгиб сводится к проверке условия:

(2.3.19)

При выводе расчётной формулы для определения напряжений изгиба принимают следующие допущения:
1) вся нагрузка зацепления передаются одной парой зубьев, которая приложена к вершине зуба и направлена по нормали к его профилю (сила трения не учитываются); 2) зуб рассматривают как консольную балку прямоугольного сечения, что позволяет рассчитывать его методами сопротивления материалов. Фактически зуб представляет собой балку с изменяющейся формой. Это учитывается введением в расчётные формулы теоретического коэффициента концентрации напряжений Кт.

Распределённую по ширине венца зуба нагрузку заменяют сосредоточенной силой , которую переносят по линии действия на ось зуба и раскладывают на две составляющие: изгибающую зуб и сжимающую , где - угол направления нормальной силы Fn. Он несколько больше угла зацепления .

Напряжение изгиба в опасном сечении (вблизи хорды основной окружности), т.е. напряжение на растянутой стороне зуба, где возникают усталостные трещины рис.2.3.13.

Рисунок 2.3.13 Эпюры распределения напряжений по ширине зуба

Напряжения определяются отношением внешней силы к моменту сопротивления сечения.

Тогда после подстановки в исходную формулу, формула проверочного расчёта прямозубых передач:

 

(2.3.20)

где и - расчётное и допускаемое напряжения изгиба, Н/мм2.

Ft – окружная сила, H,
b и m – ширина и модуль зубчатого колеса или шестерни, мм,
YF – коэффициент формы зуба – величина безразмерная, зависящая от числа зубьев z или zv и коэффициента смещения х. Значения YF для зубчатых колёс без смещения приводятся в справочнике,
-коэффициент нагрузки при расчете на изгиб,
- коэффициент нагрузки, учитывающий распределение нагрузки между зубьями (для прямозубых передач ),
- коэффициент нагрузки, учитывающий неравномерность распределения нагрузки по ширине зубчатого венца (по длине контактных линий),
- коэффициент нагрузки, учитывающий дополнительные динамические нагрузки,
- допускаемое напряжение изгиба,
- предел выносливости зубьев при изгибе,
- коэффициент долговечности при изгибе,
- базовое число циклов при изгибе,
= 1,55- 1,75 - допускаемый коэффициент запаса прочности,
Зубья шестерни и колеса будут иметь примерно равную прочность на изгиб при условии


(2.3.21)

Модуль зубьев m определяют расчётом на изгиб, исходя из межосевого расстояния , полученного из условия контактной прочности. В этом случае для получения расчётной формулы надо в выражении (2.3.20): заменить ft на 2Т/d, где . Тогда, решив уравнение относительно модуля m, при некоторых средних значениях коэффициентов , и получим формулу для приближенного определения модуля:


(2.3.22)

В эту формулу вместо подставляют меньшее из и . Полученное значение модуля округляют в большую сторону до стандартного. Модуль колес рекомендуется принимать минимальным. Уменьшение модуля и соответствующее увеличение числа зубьев способствует уменьшению удельного скольжения, что увеличивает надежность против заедания. При малом модуле увеличивается коэффициент торцевого перекрытия . То есть увеличивается плавность работы зацепления и к.п.д., уменьшается шум.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.