Лекция № 3. Механическая энергия (2 часа).
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Лекция № 3. Механическая энергия (2 часа).





1. Сила, работа и потенциальная энергия, связь между силой и потенциальной энергией.

2. Консервативные и неконсервативные силы. Работа и кинетическая энергия.

3. Закон сохранения полной механической энергии в поле потенциальных сил.

4. Столкновение тел.

 

Цели:

· ввести понятия работы, энергии, мощности;

· установить связь между силой, работой, энергией;

· сформулировать закон сохранения энергии;

· рассмотреть процессы, происходящие при столкновении тел.

 

Литература:

 

1. Трофимова Т.И. Курс физики: учебное пособие для инженерно-технических специальностей вузов - М.: Academia, 2006, 2007 и 2008.

2. Грабовский Р. И. Курс физики [Электронный ресурс]: учебное пособие / Р. И. Грабовский - Санкт-Петербург [и др.]: Лань, 2012.

3. Зисман Г. А. Курс общей физики [Электронный ресурс]: [учебное пособие для студентов высших учебных заведений, обучающихся по техническим, естественнонаучным и педагогическим направлениям и специальностям]: В 3-х т. / Г. А. Зисман, О. М. Тодес - Санкт-Петербург [и др.]: Лань, 2007- Т. 2: Электричество и магнетизм.

4. Ливенцев Н.М. Курс физики [Электронный ресурс]: учебное пособие - СПб: Лань, 2012.

5. Бабаев В.С., Легуша Ф.Ф. Корректирующий курс физики [Электронный ресурс] - СПб: Лань, 2011.

6. Калашников Н. П. Основы физики: учебник для вузов: в 2-х т / Н. П. Калашников, М. А. Смондырев - М.: Дрофа, 2007.

7. Рогачев Н. М. Курс физики [Электронный ресурс]: [учебное пособие для студентов вузов, обучающихся в области техники и технологий] / Н. М. Рогачев - Санкт-Петербург [и др.]: Лань, 2010.

8. Александров И.В. и др. Современная физика [Электронный ресурс]: учебное пособие для студентов всех форм обучения, обучающихся по техническим и технологическим направлениям и специальностям - Уфа: УГАТУ, 2008.




Механическая энергия. Работа. Мощность

Энергия, работа, мощность

Энергия — универсальная мера различных форм движения и взаимодействия. С раз­личными формами движения материи связывают различные формы энергии: механи­ческую, тепловую, электромагнитную, ядерную и др. В одних явлениях форма движе­ния материи не изменяется (например, горячее тело нагревает холодное), в дру­гих — переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той иди иной форме) одним телом другому телу, равна энергии, полученной последним телом.

Изменение механического движения тела вызывается силами, действующими на него со стороны других тел. Чтобы количественно характеризовать процесс обмена энергией между взаимодействующими телами, в механике вводится понятие работы силы.

Если тело движется прямолинейно и на него действует постоянная сила F, которая составляет некоторый угол a с направлением перемещения, то работа этой силы равна произведению проекции силы Fs на направление перемещения (Fs= Fcosa), умноженной на перемещение точки приложения силы:

(11.1)

В общем случае сила может изменяться как по модулю, так и по направлению, поэтому формулой (11.1) пользоваться нельзя. Если, однако, рассмотреть элементар­ное перемещение dr, то силу F можно считать постоянной, а движение точки ее приложения — прямолинейным. Элементарной работой силы F на перемещении dr называется скалярная величина

где a — угол между векторами F и dr; ds = |dr| — элементарный путь; Fs проекция вектора F на вектор dr (рис. 13).

Работа силы на участке траектории от точки 1 до точки 2 равна алгебраической сумме элементарных работ на отдельных бесконечно малых участках пути. Эта сумма приводится к интегралу

(11.2)

Для вычисления этого интеграла надо знать зависимость силы Fs, от пути s вдоль траектории 12. Пусть эта зависимость представлена графически (рис. 14), тогда искомая работа А определяется на графике площадью заштрихованной фигуры. Если, например, тело движется прямолинейно, сила F=const и a=const, то получим

где s — пройденный телом путь (см. также формулу (11.1)).

Из формулы (11.1) следует, что при a < p/2 работа силы положительна, в этом случае составляющая Fs совпадает по направлению с вектором скорости движе­ния v (см. рис. 13). Если a > p/2, то работа силы отрицательна. При a = p/2 (сила направлена перпендикулярно перемещению) работа силы равна нулю.

Единица работы —джоуль (Дж): 1 Дж — работа, совершаемая силой 1 Н на пути 1 м (1 Дж=1 Н × м).

Чтобы охарактеризовать скорость совершения работы, вводят понятие мощности:

(11.3)

За время dt силаF совершает работу Fdr, и мощность, развиваемая этой силой, в данный момент времени

т. е. равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения этой силы; N — величина скалярная.

Единица мощности —ватт (Вт): 1 Вт — мощность, при которой за время 1 с совершается работа 1 Дж (1 Вт = 1 Дж/с).

 

Кинетическая и потенциальная энергии

Кинетическая энергия механической системы — это энергия механического движения этой системы.

Сила F, действуя на покоящееся тело и вызывая его движение, совершает работу, а энергия движущегося тела возрастает на величину затраченной работы. Таким образом, работа dA силы F на пути, который тело прошло за время возрастания скорости от 0 до v, идет на увеличение кинетической энергии dT тела, т. е.

Используя второй закон Ньютона и умножая на перемещение dr получаем

Так как то dA = mv dv=mvdv=dT, откуда

Таким образом, тело массой т, движущееся со скоростью v, обладает кинетической энергией

(12.1)

Из формулы (12.1) видно, что кинетическая энергия зависит только от массы и скорости тела, т. е. кинетическая энергия системы есть функция состояния ее движения.

При выводе формулы (12.1) предполагалось, что движение рассматривается в инерциальной системе отсчета, так как иначе нельзя было бы использовать законы Ньюто­на. В разных инерциальных системах отсчета, движущихся друг относительно друга, скорость тела, а следовательно, и его кинетическая энергия будут неодинаковы. Таким образом, кинетическая энергия зависит от выбора системы отсчета.

Потенциальная энергия — механическая энергия системы тел, определяемая их вза­имным расположением и характером сил взаимодействия между ними.

Пусть взаимодействие тел осуществляется посредством силовых полей (например, поля упругих сил, поля гравитационных сил), характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Такие поля называются потенциальными, а силы, действующие в них, — консервативными. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипатнвной; ее примером является сила трения.

Тело, находясь в потенциальном поле сил, обладает потенциальной энергией П. Работа консервативных сил при элементарном (бесконечно малом) изменении кон­фигурации системы равна приращению потенциальной энергии, взятому со знаком минус, так как работа совершается за счет убыли потенциальной энергии:

(12.2)

Работа dA выражается как скалярное произведение силы F на перемещение dr и выражение (12.2) можно записать в виде

(12.3)

Следовательно, если известна функция П(r), то из формулы (12.3) можно найти силу F по модулю и направлению.

Потенциальная энергия может быть определена исходя из (12.3) как

где С — постоянная интегрирования, т. е. потенциальная энергия определяется с точ­ностью до некоторой произвольной постоянной. Это, однако, не отражается на физи­ческих законах, так как в них входит или разность потенциальных энергий в двух положениях тела, или производная П по координатам. Поэтому потенциальную энер­гию тела в каком-то определенном положении считают равной нулю (выбирают нулевой уровень отсчета), а энергию тела в других положениях отсчитывают от­носительно нулевого уровня. Для консервативных сил

или в векторном виде

(12.4)

где

(12.5)

(i, j, k — единичные векторы координатных осей). Вектор, определяемый выражением (12.5), называется градиентом скаляра П.

Для него наряду с обозначением grad П применяется также обозначение ÑП. Ñ («набла») означает символический вектор, называемыйоператором Гамильтона*илинабла-оператором:

(12.6)

 

* У. Гамильтон (1805—1865) — ирландский математик и физик.

 

Конкретный вид функции П зависит от характера силового поля. Например, потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, равна

(12.7)

где высота h отсчитывается от нулевого уровня, для которого П0=0. Выражение (12.7) вытекает непосредственно из того, что потенциальная энергия равна работе силы тяжести при падении тела с высоты h на поверхность Земли.

Так как начало отсчета выбирается произвольно, то потенциальная энергия может иметь отрицательное значение (кинетическая энергия всегда положительна!). Если принять за нуль потенциальную энергию тела, лежащего на поверхности Земли, то потенциальная энергия тела, находящегося на дне шахты (глубина h' ), П= —mgh'.

Найдем потенциальную энергию упругодеформированного тела (пружины). Сила упругости пропорциональна деформации:

где Fx упp проекция силы упругости на ось х; k — коэффициент упругости (для пружины — жесткость), а знак минус указывает, что Fx упpнаправлена в сторону, противоположную деформации x.

По третьему закону Ньютона, деформирующая сила равна по модулю силе уп­ругости и противоположно ей направлена, т. е.

Элементарная работа dA, совершаемая силой Fx при бесконечно малой деформации dx, равна

а полная работа

идет на увеличение потенциальной энергии пружины. Таким образом, потенциальная энергия упругодеформированного тела

Потенциальная энергия системы является функцией состояния системы. Она зависит только от конфигурации системы и ее положения по отношению к внешним телам.

Полная механическая энергия системы — энергия механического движения и вза­имодействия:

т. е. равна сумме кинетической и потенциальной энергий.

Закон сохранения энергии

Закон сохранения энергии — результат обобщения многих экспериментальных данных. Идея этого закона принадлежит М. В. Ломоносову (1711—1765), изложившему закон сохранения материи и движения, а количественная формулировка закона сохранения энергии дана немецким врачом Ю. Майером (1814—1878) и немецким естествоиспыта­телем Г. Гельмгольцем (1821—1894).

Рассмотрим систему материальных точек массами m1, m2,..., mn, движущихся со скоростями v1, v2,..., vn. Пусть , ,..., — равнодействующие внутренних консер­вативных сил, действующих на каждую из этих точек, a F1, F2, ..., Fn — равнодейст­вующие внешних сил, которые также будем считать консервативными. Кроме того, будем считать, что на материальные точки действуют еще и внешние неконсервативные силы; равнодействующие этих сил, действующих на каждую из материальных точек, обозначимf1, f2, ..., fn. При v<<c массы материальных точек постоянны и уравнения второго закона Ньютона для этих точек следующие:

Двигаясь под действием сил, точки системы за интервал времени dt совершают перемещения, соответственно равные dr1, dr2, ..., drn. Умножим каждое из уравнений скалярно на соответствующее перемещение и, учитывая, что dri==vi dt, получим

Сложив эти уравнения, получим

(13.1)

Первый член левой части равенства (13.1)

где dT — приращение кинетической энергии системы. Второй член равен элементарной работе внутренних и внешних консервативных сил, взятой со знаком минус, т. е. равен элементарному приращению потенциальной энергии dП системы (см. (12.2)).

Правая часть равенства (13.1) задает работу внешних неконсервативных сил, дейст­вующих на систему. Таким образом,имеем

(13.2)

При переходе системы из состояния 1 в какое-либо состояние 2

т. е. изменение полной механической энергии системы при переходе из одного состоя­ния в другое равно работе, совершенной при этом внешними неконсервативными силами. Если внешние неконсервативные силы отсутствуют, то из (13.2) следует, что

d (T+П) = 0,

откуда

(13.3)

т. е. полная механическая энергия системы сохраняется постоянной. Выражение (13.3) представляет собой закон сохранение механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия со­храняется, т. е. не изменяется со временем.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Закон сохранения механической энергии связан с однородностью времени. Однород­ность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени. Например, при свободном падении тела в поле сил тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продо­лжительности свободного падения тела и не зависят от того, когда тело начало падать.

Существует еще один вид систем — диссипативные системы, в которых механичес­кая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассеяния) энергии. Строго говоря, все системы в природе являются диссипативными.

В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и об­ратно в эквивалентных количествах так, что полная энергия остается неизменной. Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга. Закон сохранения и превращения энер­гии — фундаментальный закон природы, он справедлив как для систем макроскопичес­ких тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механической энергии несправедлив. Однако при «исчезнове­нии» механической энергии всегда возникает эквивалентное количество энергии друго­го вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожимости материи и ее движения.

Удар абсолютно упругих и неупругих тел

Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.

Удар (или соударение)—это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Помимо ударов в прямом смысле этого слова (столкновения атомов или биллиардных шаров) сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. Силы взаимодействия между сталкивающимися телами (ударные или мгновенные силы) столь велики, что внешними силами, действующими на них, можно пренебречь. Это позволяет систему тел в процес­се их соударения приближенно рассматривать как замкнутую систему и применять к ней законы сохранения.

Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения пока­зывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и да удара называется коэффициентом восстановления e:

Если для сталкивающихся тел e=0, то такие тела называются абсолютно неупругими, если e=1 — абсолютно упругими. На практике для всех тел 0 < e < 1 (например, для стальных шаров e»0,56, для шаров из слоновой кости e»0,89, для свинца e»0). Однако в некоторых случаях тела можно с большой степенью точности рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.

Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называетсялинией удара. Удар называетсяцентральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.

Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энер­гия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию (подчеркнем, что это идеализированный случай).

Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.

Обозначим скорости шаров массами т1 и m2 до удара через v1 и v2, после удара—через и (рис. 18). В случае прямого центрального удара векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицатель-нос — движению влево.

При указанных допущениях законы сохранения имеют вид

(15.1)

(15.2)

Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим

(15.3)

(15.4)

откуда

(15.5)

Решая уравнения (15.3) и (15.5), находим

(15.6)

(15.7)

Разберем несколько примеров.

1. При v2=0

(15.8)

(15.9)

Проанализируем выражения (15.8) в (15.9) для двух шаров различных масс:

а) т12. Если второй шар до удара висел неподвижно (v2=0) (рис. 19), то после удара остановится первый шар ( =0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара ( );

б) т1>т2. Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью ( <v1). Скорость второго шара после удара больше, чем скорость первого после удара ( > ) (рис. 20);

в) т1<т2. Направление движения первого шара при ударе изменяется—шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т. е. <v1 (рис. 21);

г) т2>>т1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что = –v1, »2m1v1/m2»0.

2. При т1=т2 выражения (15.6) и (15.7) будут иметь вид

т. е. шары равной массы «обмениваются» скоростями.

Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое. Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстре­чу друг другу (рис. 22).

Если массы шаров т1 и т2, их скорости до удара v1 и v2, то, используя закон сохранения импульса, можно записать

где v — скорость движения шаров после удара. Тогда

(15.10)

Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае, если массы шаров равны (т1=т2), то

Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними действуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по разности кинетической энергии тел до и после удара:

Используя (15.10), получаем

Если ударяемое тело было первоначально неподвижно (v2=0), то

Когда m2>>m1 (масса неподвижного тела очень большая), то v<<v1 и почти вся кинети­ческая энергия тела при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m1>>m2), тогда v»v1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.

Абсолютно неупругий удар — пример того, как происходит «потеря» механической энергии под действием диссипативных сил.

 

Контрольные вопросы









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.