Лекция № 4. Кинематика и динамика вращательного движения
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Лекция № 4. Кинематика и динамика вращательного движения





(2 часа).

1. Кинематика вращательного движения: угловая скорость и угловое ускорение, их связь с линейной скоростью и ускорением.

2. Момент силы. Уравнение моментов. Момент инерции. Теорема Штейнера. Кинетическая энергия вращательного движения твердого тела.

3. Основное уравнение динамики вращательного движения твердого тела с закрепленной осью вращения. Момент импульса тела. Закон сохранения момента импульса.

4. Гироскопические силы. Гироскопы и их применение в технике.

 

Цели:

· ввести понятия угловой скорости, углового ускорения, определить их связь с линейными величинами;

· ввести понятие момент силы, записать уравнение моментов;

· ввести понятие момента инерции, сформулировать теорему Штейнера;

· изучить основное уравнение динамики вращательного движения и закон сохранения момента импульса;

· рассмотреть гироскопический эффект, устройство гироскопа и его применение.

 

Литература:

 

1. Трофимова Т.И. Курс физики: учебное пособие для инженерно-технических специальностей вузов - М.: Academia, 2006, 2007 и 2008.

2. Грабовский Р. И. Курс физики [Электронный ресурс]: учебное пособие / Р. И. Грабовский - Санкт-Петербург [и др.]: Лань, 2012.

3. Зисман Г. А. Курс общей физики [Электронный ресурс]: [учебное пособие для студентов высших учебных заведений, обучающихся по техническим, естественнонаучным и педагогическим направлениям и специальностям]: В 3-х т. / Г. А. Зисман, О. М. Тодес - Санкт-Петербург [и др.]: Лань, 2007- Т. 2: Электричество и магнетизм.

4. Ливенцев Н.М. Курс физики [Электронный ресурс]: учебное пособие - СПб: Лань, 2012.

5. Рогачев Н. М. Курс физики [Электронный ресурс]: [учебное пособие для студентов вузов, обучающихся в области техники и технологий] / Н. М. Рогачев - Санкт-Петербург [и др.]: Лань, 2010.



6. Александров И.В. и др. Современная физика [Электронный ресурс]: учебное пособие для студентов всех форм обучения, обучающихся по техническим и технологическим направлениям и специальностям - Уфа: УГАТУ, 2008.


Угловая скорость и угловое ускорение

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдель­ные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени Dt зададим углом D . Элементар­ные (бесконечно малые) повороты можно рассматривать как векторы (они обозначают­ся или ). Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняетсяправилу правого винта(рис.6). Векторы, направления которых связываются с направлением вращения, назы­ваютсяпсевдовекторами илиаксиальными векторами. Эти векторы не имеют опреде­ленных точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор направлен вдоль оси вращения по правилу правого винта, т.е. так же, как и вектор (рис.7). Размерность угловой скорости dim w=T1, а ее единица — ради­ан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

т. е.

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от к R.

Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T — временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2p. Так как промежутку времени Dt = T соответствует = 2p, то = 2p/T, откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

откуда

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном — противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейными (длина пути s, пройденного точкой по дуге окружности радиуса R, линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми величинами (угол поворота j, угловая скорость w, угловое ускорение e) выражается следующими формулами:

В случае равнопеременного движения точки по окружности (e=const)

где w0 — начальная угловая скорость.

 

Момент инерции

При изучении вращения твердых тел будем пользоваться понятием момента инерции. Моментом инерциисистемы (тела) относительно данной оси называется физическая величина, равнаясумме произведений масс л материальных точек системы на квадраты их расстояний до рассматриваемой оси:

В случае непрерывного распределения масс эта сумма сводится к интегралу

где интегрирование производится по всему объему тела. Величина r в этом случае есть функция положения точки с координатами х, у, z.

В качестве примера найдем момент инерции однородного сплошного цилиндра высотой h и радиусом R относительно его геометрической оси (рис. 23). Разобьем цилиндр на отдельные полые концентрические цилиндры бесконечно малой толщины dr с внутренним радиусом r и внешним r+dr. Момент инерции каждого полого цилиндра dJ=r2dm (так как dr<<r, то считаем, что расстояние всех точек цилиндра от оси равно r), где dm — масса всего элементарного цилиндра; его объем 2prhdr. Если r—плотность материала, то dm=2prhrdr и dJ=2phrrзdr. Тогда момент инерции сплошного цилиндра

но так как pR2h — объем цилиндра, то его масса m=pR2hr, а момент инерции

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера: момент инерции тела J относительно произвольной оси равен моменту его инерции Jc относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы т тела на квадрат расстояния а между осями:

(16.1)

В заключение приведем значения моментов инерции (табл. 1) для некоторых тел (тела считаются однородными, т — масса тела).

Таблица 1

 

Кинетическая энергия вращения

Рассмотрим абсолютно твердое тело (см. § 1), вращающееся около неподвижной оси z, проходящей через него (рис. 24). Мысленно разобьем это тело на маленькие объемы с элементарными массами т1, т2 ,..., тn , находящиеся на расстоянии r1, r2,..., rn от оси.

При вращении твердого тела относительно неподвижной оси отдельные его элементар­ные объемы массами mi опишут окружности различных радиусов ri, и имеют различные линейные скорости vi. Но так как мы рассматриваем абсолютно твердое тело, то угловая скорость вращения этих объемов одинакова:

(17.1)

Кинетическую энергию вращающегося тела найдем как сумму кинетических энер­гий его элементарных объемов:

или

Используя выражение (17.1), получаем

где Jz момент инерции тела относительно оси z. Таким образом, кинетическая энергия вращающегося тела

(17.2)

Из сравнения формулы (17.2) с выражением (12.1) для кинетической энергии тела движущегося поступательно (T=mv2/2), следует, что момент инерции — мера инертности тела при вращательном движении. Формула (17.2) справедлива для тела вращающегося вокруг неподвижной оси.

В случае плоского движения тела, например цилиндра, скатывающегося с наклонной плоскости без скольжения, энергия движения складывается из энергии поступательного движения и энергии вращения:

где m — масса катящегося тела; vc скорость центра масс тела; Jc — момент инер­ции тела относительно оси, проходящей через его центр масс; w — угловая скорость тела.

 

Момент силы. Уравнение динамики вращательного движения твердого тела

Моментом силы F относительно неподвижной точки О называется физическая величина, определяемая векторным произведением радиуса-вектора r, проведенного из точ­ки О в точку А приложения силы, на силу F (рис. 25):

Здесь М — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к F. Модуль момента силы

(18.1)

где a— угол между r и F; r sina = l — кратчайшее расстояние между линией действия силы и точкой О —плечо силы.

Моментом силы относительно неподвижной оси z называется скалярная величина Mz , равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента Мz не зависит от выбора положения точки О на оси z.

Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью:

Найдем выражение для работы при вращении тела (рис. 27). Пусть сила F приложе­на в точке В, находящейся от оси z на расстоянии r, a — угол между направлением силы и радиусом-вектором r. Так как тело абсолютно твердое, то работа этой силы равна работе, затраченной на поворот всего тела. При повороте тела на бесконечно малый угол dj точка приложения В проходит путь ds=rdj и работа равна произведе­нию проекции силы на направление смещения на величину смещения:

(18.2)

Учитывая (18.1), можем записать

где Frsin a = Fl =Mz момент силы относительно оси z. Таким образом, работа при вращении тела равна произведению момента действующей силы на угол поворота.

Работа при вращении тела идет на увеличение его кинетической энергии: dA=dT, но поэтому Mzdj = Jzwdw, или

Учитывая, что получаем

(18.3)

Уравнение (18.3) представляет собойуравнение динамики вращательного движения твердого телаотносительно неподвижной оси.

Можно показать, что если ось z совпадает с главной осью инерции (см. § 20), проходящей через центр масс, то имеет место векторное равенство

(18.4)

где J — главный момент инерции тела (момент инерции относительно главной оси).

 

Момент импульса и закон то сохранения

При сравнении законов вращательного и поступательного движений просматривается аналогия между ними, только во вращательном движении вместо силы «выступает» ее момент, роль массы «играет» момент инерции. Какая же величина будет аналогом импульса тела? Ею является момент импульса тела относительно оси.

Моментом импульса (количества движения)материальной точки Аотносительно неподвижной точки Оназывается физическая величина, определяемая векторным произ­ведением:

где r — радиус-вектор, проведенный из точки О в точку A, p=mv импульс мате­риальной точки (рис. 28); L — псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от r к р.

Модуль вектора момента импульса

где a угол между векторамиrир,l — плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдель­ная точка тела движется по окружности постоянного радиуса ri с некоторой скоро­стью vi . Скорость vi и импульс mivi перпендикулярны этому радиусу, т. с. радиус является плечом вектора mivi . Поэтому можем записать, что момент импульса отдель­ной частицы равен

(19.1)

и направлен по оси в сторону, определяемую правилом правого винта.

Монет импульса твердого телаотносительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу (17.1) vi = wri, получим

т. е.

(19.2)

Таким образом, момент импульса твердого тела относительно оси равен произведе­нию момента инерции тела относительно той же оси на угловую скорость. Продифференцируем уравнение (19.2) по времени:

т. е.

Это выражение — еще одна форма уравнения динамики вращательного движения твер­дого телаотносительно неподвижной оси: производная момента импульса твердого тела относительно оси равна моменту сил относительно той же оси.

Можно показать, что имеет место векторное равенство

(19.3)

В замкнутой системе момент внешних сил откуда

(19.4)

Выражение (19.4) представляет собой закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Закон сохранения момента импульса — фундаментальный закон природы. Он связан со свойством симметрии пространства — его изотропностью, т. е. с инвариантностью физических законов относительно выбора направления осей координат системы от­счета (относительно поворота замкнутой системы в пространстве на любой угол).

Продемонстрировать закон сохранения момента импульса можно с помощью скамьи Жуковского. Пусть человек, сидящий на скамье, которая без трения вращается вокруг вертикальной оси, и держащий в вытянутых руках гантели (рис. 29), приведен во вращение с угловой скоростью w1. Если человек прижмет гантели к себе, то момент инерции системы уменьшится. Поскольку момент внешних сил равен нулю, момент импульса системы сохраняется и угловая скорость вращения w2 возрастает. Аналогич­но, гимнаст во время прыжка через голову поджимает к туловищу руки и ноги, чтобы уменьшить свой момент инерции и увеличить тем самым угловую скорость вращения.

Сопоставим основные величины и уравнения, определяющие вращение тела вокруг неподвижной оси и его поступательное движение (табл. 2).

 

Свободные оси. Гироскоп

Для того чтобы сохранить положение оси вращения твердого тела с течением времени неизменным, используют подшипники, в которых она удерживается. Однако существу­ют такие оси вращения тел, которые не изменяют своей ориентации в пространстве без действия на нее внешних сил. Эти оси называютсясвободными осями (илиосями свободного вращения). Можно доказать, что в любом теле существуют три взаимно перпендикулярные оси, проходящие через центр масс тела, которые могут служить свободными осями (они называютсяглавными осями инерции тела). Например, главные оси инерции однородного прямоугольного параллелепипеда проходят через центры противоположных граней (рис. 30). Для однородного цилиндра одной из главных осей инерции является его геометрическая ось, а в качестве остальных осей могут быть две любые взаимно перпендикулярные оси, проведенные через центр масс в плоскости, перпендикулярной геометрической оси цилиндра. Главными осями инерции шара являются любые три взаимно перпендикулярные оси, проходящие через центр масс.

Для устойчивости вращения большое значение имеет, какая именно из свободных осей служит осью вращения тела.

Можно показать, что вращение вокруг главных осей с наибольшим и наименьшим моментами инерции оказывается устойчивым, а вращение около оси со средним моментом — неустойчивым. Так, если подбросить тело, имеющее форму параллелепи­педа, приведя его одновременно во вращение, то оно, падая, будет устойчиво вращать­ся вокруг осей 1 и 2 (рис. 30).

Если, например, палочку подвесить за один конец нити, а другой конец, закреплен­ный к шпинделю центробежной машины, привести в быстрое вращение, то палочка будет вращаться в горизонтальной плоскости около вертикальной оси, перпендикуляр­ной оси палочки и проходящей через ее середину (рис. 31). Это и есть ось свободного вращения (момент инерции при этом положении палочки максимальный). Если теперь палочку, вращающуюся вокруг свободной оси, освободить от внешних связей (аккурат­но снять верхний конец нити с крючка шпинделя), то положение оси вращения в пространстве в течение некоторого времени сохраняется. Свойство свободных осей сохранять свое положение в пространстве широко применяется в технике. Наиболее интересны в этом плане гироскопы — массивные однородные тела, вращающиеся с большой угловой скоростью около своей оси симметрии, являющейся свободной осью.

Рассмотрим одну из разновидностей гироскопов — гироскоп на кардановом подве­се (рис. 32). Дискообразное тело — гироскоп — закреплено на оси АА, которая может вращаться вокруг перпендикулярной ей горизонтальной оси ВВ, которая, в свою очередь, может поворачиваться вокруг вертикальной оси DD. Все три оси пересекаются в одной точке С, являющейся центром масс гироскопа и остающейся неподвижной, а ось гироскопа может принять любое направление в пространстве. Силами трения в подшипниках всех трех осей и моментом импульса колец пренебрегаем.

Таккак трение в подшипниках мало, то, пока гироскоп неподвижен, его оси можно придать любое направление. Если начать гироскоп быстро вращать (например, с помо­щью намотанной на ось веревочки) и поворачивать его подставку, то ось гироскопа сохраняет свое положение в пространстве неизменной. Это можно объяснить с помо­щью основного закона динамики вращательного движения. Для свободно враща­ющегося гироскопа сила тяжести не может изменить ориентацию его свободной оси, так как эта сила приложена к центру масс (центр вращения С совпадает с центром масс), а момент силы тяжести относительно закрепленного центра масс равен нулю. Моментом сил трения мы также пренебрегаем. Поэтому если момент внешних сил относительно его закрепленного центра масс равен нулю, то, как следует из уравнения (19.3), L = const. т. е. момент импульса гироскопа сохраняет свою величину и направле­ние в пространстве. Следовательно, вместе с ним сохраняет свое положение в простран­стве и ось гироскопа.

Чтобы ось гироскопа изменила свое направление в пространстве, необходимо, согласно (19.3), отличие от нуля момента внешних сил. Если момент внешних сил, приложенных к вращающемуся гироскопу, относительно его центра масс отличен от нуля, то наблюдается явление, получившее названиегироскопического эффекта. Оно состоит в том, что под действием пары сил F, приложенной к оси вращающегося гироскопа, ось гироскопа (рис. 33) поворачивается вокруг прямой О3О3, а не вокруг прямой O2O2 , как это казалось бы естественным на первый взгляд (O1O1 и O2O2 лежат в плоскости чертежа, а О3О3 и силы F перпендикулярны ей).

Гироскопический эффект объясняется следующим образом. Момент М пары сил F направлен вдоль прямой О2О2. За время dt момент импульса L гироскопа получит приращение dL=Mdt (направление dL совпадает с направлением М) и станет равным L'=L+dL. Направление вектора L' совпадает с новым направлением оси вращения гироскопа. Таким образом, ось вращения гироскопа повернется вокруг прямой О3О3. Если время действия силы мало, то, хотя момент сил М и велик, изменение момента импульса dL гироскопа будет также весьма малым. Поэтому кратковременное дейст­вие сил практически не приводит к изменению ориентации оси вращения гироскопа в пространстве. Для ее изменения следует прикладывать силы в течение длительного времени.

Если ось гироскопа закреплена подшипниками, то вследствие гироскопического эффекта возникают так называемые гироскопические силы, действующие на опоры, в которых вращается ось гироскопа. Их действие необходимо учитывать при констру­ировании устройств, содержащих быстровращающиеся массивные составные части. Гироскопические силы имеют смысл только во вращающейся системе отсчета и явля­ются частным случаем кориолисовой силы инерции (см. § 27).

Гироскопы применяются в различных гироскопических навигационных приборах (гирокомпас, гирогоризонт и т. д.). Другое важное применение гироскопов — поддер­жание заданного направления движения транспортных средств, например судна (авто­рулевой) и самолета (автопилот) и т. д. При всяком отклонении от курса вследствие каких-то воздействий (волны, порыва ветра и т. д.) положение оси гироскопа в про­странстве сохраняется. Следовательно, ось гироскопа вместе с рамами карданова подвеса поворачивается относительно движущегося устройства. Поворот рам карданова подвеса с помощью определенных приспособлений включает рули управления, которые возвращают движение к заданному курсу.

Впервые гироскоп применен французским физиком Ж. Фуко (1819—1868) для доказательства вращения Земли.

 

Контрольные вопросы

  1. Что называется угловой скоростью?
  2. Что называется угловым ускорением? Как оно связано с угловой скоростью?
  3. Как определяются направления угловой скорости и углового ускорения?
  4. Какова связь между линейными и угловыми величинами?
  5. Что такое момент инерции тела?
  6. Какова роль момента инерции во вращательном движении?
  7. Выведите формулу для момента инерции обруча.
  8. Сформулируйте и поясните теорему Штейнера.
  9. Какова формула для кинетической энергии тела, вращающегося вокруг неподвижной оси, и как ее вывести?
  10. Что называется моментом силы относительно неподвижной точки? относительно неподвижной оси? Как определяется направление момента силы?
  11. Выведите и сформулируйте уравнение динамики вращательного движения твердого тела.
  12. Что такое момент импульса материальной точки? твердого тела? Как определяется направление вектора момента импульса?
  13. В чем заключается физическая сущность закона сохранения момента импульса?
  14. Каким свойством симметрии пространства обусловливается справедливость закона сохранения момента импульса?
  15. Что такое свободные оси (главные оси инерции)? Какие из них являются устойчивыми?
  16. Что такое гироскоп? Каковы его основные свойства?

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.