Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Уравнение свободных незатухающих гармонических колебаний.





Для возбуждения в контуре колебаний предварительно заряжают конденсатор, сообщая его обкладкам заряд ±q. Тогда в начальный момент времени t=0 (рис. 19, а) между обкладками конденсатора возникнет электрическое поле. Если замкнуть конденсатор на катушку индуктивности, конденсатор начнет разряжаться, и в контуре потечет возрастающий со временем ток I. Когда конден­сатор полностью разрядится, энергия электрического поля конденсатора полностью перейдет в энер­гию магнитного поля катушки (рис. 19, б). Начиная с этого момента ток в контуре будет убывать, и, следовательно, начнет ослабевать магнитное поле катушки, тогда в ней согласно закону Фарадея индуцируется ток, который течет в соответствии с правилом Ленца в том же направлении, что и ток разрядки конденсатора. Конденсатор начнет перезаряжаться, возникнет электрическое поле, стремящееся осла­бить ток, который, в конце концов, обратится в нуль, а заряд на обкладках конденсатора достигнет максимума (рис. 19, в). Далее те же процессы начнут протекать в обратном направлении (рис. 19, г), и система к моменту времени t=Т (Т – период колебаний) придет в первоначальное состояние (рис. 19, а). После этого начнется повторение рассмотренного цикла разряд­ки и зарядки конденсатора, то есть начнутся периодические незатухающие колебания величины заряда q на обкладках конденсатора, напряжения UC на конденсаторе и силы тока I, текущего через катушку индуктивности. Согласно закону Фарадея напряжение UC на конденсаторе определяется скоростью изменения силы тока в катушке индуктивности идеального контура, то есть :

.

Исходя из того, что UC=q/C, а I=dq/dt, получаем дифференциальное уравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

или .

Решением этого дифференциального уравнения является функция q(t), то естьуравнение свободных незатухающих гармонических колебаний величины заряда q на обкладках конденсатора:

,

где q(t) – величина заряда на обкладках конденсатора в момент времени t;

q0 – амплитуда колебаний заряда на обкладках конденсатора;

– круговая (или циклическая) частота колебаний ( ) ;

=2 /T (T – период колебаний, формула Томсона);

– фаза колебаний в момент времени t;

– начальная фаза колебаний, то есть фаза колебаний в момент времени t=0.

Уравнение свободных затухающих гармонических колебаний.В реальном колебательном контуре учитывается, что кроме катушки индуктивностью L, конденсатора емкостью С, в цепи также имеется резистор сопротивлением R,отличным от нуля, что является причиной затухания колебаний в реальном колебательном контуре. Свободные затухающие колебания – колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается.

Для цепи реального колебательного контура напряжения на последовательно включенных конденсаторе емкостью С и резисторе сопротивлением R складываются. Тогда с учетом закона Фарадея для цепи реального колебательного контура можно записать:



,

где – электродвижущая сила самоиндукции в катушке;

UC – напряжение на конденсаторе (UC =q/C);

IR – напряжения на резисторе.

Исходя из того, что I=dq/dt, получаем дифференциальное уравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

или ,

где – коэффициент затухания колебаний ( ) , .

Решением полученного дифференциального уравнения является функция q(t), то естьуравнение свободных затухающих гармонических колебаний величины заряда q на обкладках конденсатора:

,

где q(t) – величина заряда на обкладках конденсатора в момент времени t;

– амплитуда затухающих колебаний заряда в момент времени t ;

q0 – начальная амплитуда затухающих колебаний заряда;

– круговая (или циклическая) частота колебаний ( );

– фаза затухающих колебаний в момент времени t;

– начальная фаза затухающих колебаний.

Период свободных затухающих колебаний в реальном колебательном контуре :

.

Вынужденные электромагнитные колебания. Чтобы в реальной колебательной системе получить незатухающие колебания, необходимо в процессе колебаний компенсировать потери энергии. Такая компенсация в реальном колебательном контуре возможна с помощью внешнего периодически изменяющегося по гармоническому закону переменного напряжения U(t):

.

В этом случае дифференциальное уравнение вынужденных электромагнитных колебанийпримет вид:

или .

Решением полученного дифференциального уравнения является функция q(t):

.

В установившемся режиме вынужденные колебания происходят с частотой w и являют­ся гармоническими, а амплитуда и фаза колебаний определяются следующими выражениями:

; .

Отсюда следует, что амплитуда колебаний величины заряда имеет максимум при резонансной частоте внешнего источника :

.

Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающего переменного напряжения к ча­стоте, близкой частоте , называется резонансом.

 

Тема 10. Электромагнитные волны

Согласно теории Максвелла электромагнитные поля могут существовать в виде электромагнитных волн, фазовая скорость распространения которых определяет­ся выражением:

,

где и – соответственно электрическая и магнитная постоянные,

e и m – соответственно электрическая и магнитная проницаемости среды,

с – скорость света в вакууме ( ) .

В вакууме (e = 1, m = l) скорость распространения электромагнитных волн совпадает со скоростью света( с ), что согласуется с теорией Максвелла о том,

что свет представляет собой электромагнитные волны.

По теории Максвелла электромагнитные волны являются поперечными,то есть век­торы и напряженностей электрического и магнитного полей взаимно перпендикулярны и лежат в плоскости, перпендикулярной вектору

скорости рас­пространения волны, причем векторы , и образуют правовинтовую систему (рис. 20).

 
 
x
у
z
Рис. 20

 

 

Из теории Максвелла следует также, что в электромагнитной волне векторы и колеблются в одинаковых фазах (рис. 20), то есть значения напряженностей Е и Н электрического и магнитного полей одновременно достигают максимума и одновременно обращаются в нуль, причем мгновенные значения Е и Н связаны соотношением: .

Уравнение плоской монохроматической электромагнитной волны (индексы у и z при Е и Н подчеркивают лишь то, что векторы и направлены вдоль взаимно перпендикулярных осей в соответствии с рис. 20):

 

,

,

 

где E0 и Н0– соответственно амплитуды напряженностей электрического и магнит­ного полей,

w – круговая частота волны, (T – период колебаний),

k – волновое число, ( – длина волны),

j – на­чальная фаза колебаний (на­чальная фаза колебаний j имеет одинаковое значение как для колебания электрического, так и магнитного векторов, так как в электромаг­нитной волне эти колебания происходят в одинаковых фазах).

Энергия электромагнитных волн. Электромагнитные волны переносят энергию. Объемная плотность w энергии электромагнитной волны складывается из объемных плотностей wэл электрического и wм магнитного полей:

.

Учитывая выражение связи между величинами Е и Н , можно получить, что суммарная плотность энергии электрического и маг­нитного полей:

.

Умножив плотность энергии w на скорость распространения волны в среде, получим модуль плотности потока энергии:

.

Tax как векторы и взаимно перпендикулярны, то произведение EH совпадает с модулем вектора ( – векторное произведение векторов и ). Кроме того, направление вектора совпадает с направлением распространения волны, то есть с направлением переноса энергии, что позволило ввести вектор ,равныйвекторному произведению , как вектор плотности потока электромагнитной энергии, называемыйвектором УмоваПойнтинга:

.

Итак, вектор направлен в сторону распространения электромагнитной волны, а его модуль равен энергии, переносимой электромагнитной волной за единицу времени через единичную площадку, перпендикулярную направлению распространения волны.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.