Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Структура первичного преобразователя UFS 3000.





 

 

 

Третий измерительный луч позволяет UFM 3030 учитывать условия измерения как в ламинарном, так и в турбулентном режиме потока.

 

Контроль состава веществ

Состав уходящих газов

Из мероприятий, направленных на энергосбережение, наиболее эффективным и самым дешевым является установление и поддержание оптимального режима сжигания топлива. Оптимальным режимом является такой режим работы топливосжигающего оборудования, который позволяет поддерживать минимальные потери тепла от химической не­полноты сгорания топлива, минимальные вредные выбросы при максимально возможном к.п.д.

Непрерывный контроль за составом уходящих газов, с помощью стационарных газоанализаторов, позволяет контролировать режим работы котла, и возможность оперативно скорректировать режим и сократить время работы котла в неэкономичном режиме.

Для поддержания нормального горения нужно подводить возду­ха в топку столько, сколько требуется для полного сгорания топлива, это достигается постоянным контролем за содержанием в дымовых газах двуокиси (СО2) и окиси углерода (СО).

В случае неполного сгорания при недостатке воздуха в составе уходящих газов будут углеводороды, окись углерода СО, а иногда и чистый водород Н, а при чрезмерном избытке воздуха создаются условия для удаления из топки несгоревших летучих го­рючих веществ и уноса частичек твердого топлива. Поэтому при эксплуатации топки следует сводить неполноту сгорания к возмож­ному минимуму. Как правило, котельный агрегат работает или при полном сгорании, или с незначительной химической неполнотой сгорания.

Система контроля предназначена для измерения объёмной концентрации кислорода (О2), оксида углерода (СО), оксида азота (NO) в дымовых газах и в воздухе, а также получения расчетным путем объёмной концентрации диоксида углерода (СО2), коэффициента избытка воздуха (α) с предварительной установкой СО2 для выбранного вида топлива.

КОЭФФИЦИЕНТ ИЗБЫТКА ВОЗДУХА

Действительное количество воздуха, необходимое для полного сгорания 1 кг топлива, должно быть больше теоретиче­ского, так как при сжигании топлива не все количе­ство необходимого воздуха используется для горения топлива; часть его не участвует в реакции горения в результате не­достаточного перемешивания воздуха с топливом, а также из-за того, что воздух не успевает вступить в соприкосновение с углеродом топлива и уходит в газоходы котла в свободном состоянии. Поэтому отношение количества воздуха, действительно подаваемого в топку, к необходимому количеству называют коэффициентом избытка воздуха в топке αт.

Исследования дымовых уходящих газов топливосжигающих установок показывают, что в их составе основными загрязнителями атмосферного воздуха являются оксиды углерода (до 50%), оксиды серы (до 20 процентов), оксиды азота (до 6-8%), углеводороды (до 5-20%), сажа, оксиды и производные минеральных включений и примесей углеводородного топлива. Исторически первой возникла технология измерения СО2 (благодаря относительной простоте анализатора), которая применялась в котельной технике уже в начале 40-х годов прошлого века. Для топлива (в основном, для угля) с постоянным соотношением содержания «углерод/водород» (С/Н) в его составе коэффициент избытка воздуха связан с концентрацией СО2 в продуктах сгорания.

Присутствие в уходящих газах СО искажает данные о коэффициенте избытка воздуха, каждый процент концентрации СО снижает на столько же содержание СО2 в продуктах сгорания при одном и том же значении α. Таким образом, именно при низких избытках воздуха, то есть в зоне риска по появлению химнедожога, регулирование по СО2 оказывается неприемлемым. Поэтому традиционно состязаются следующие методы управления:

по концентрации остаточного кислорода (О2) в продуктах сгорания;

по концентрации продуктов химнедожога (СО); с использованием совместной информации о концентрации О2 и продуктов неполного горения (СО).

В настоящее время, особенно в зарубежной технике, распространены анализаторы концентрации кислорода и СО в отходящих газах. Имеет место и зависимость значения α от соотношения С/Н в топливе. Но эта зависимость гораздо слабее, чем для СО2, а в диапазоне α=1,0÷1,15, соответствующем максимальной эффективности сжигания топлива, влиянием вида топлива можно пренебречь. Но при снижении нагрузки котла поддержание постоянной концентрации кислорода за котлом неизбежно приводит к химнедожогу.

Известны следующие методы определения концентрации кислорода: химические, электрохимические, с исполь­зованием топливных элементов, термокондуктометрический, акустический, пневматический, ионизационный, оптические, масс-спектрометрический, магнитные, с использованием полупроводни­ковых чувствительных элементов, хроматографические

Термохимический метод.

Процесс стационарного беспламенного горения происходит на крупинках мелкораздробленного катализатора, через который просасывается проба АГС (анализ газовой смеси). Температуру катализатора можно измерить, например, термопарой, сравнительный спай которой помещается в потоке АГС до катализатора, а измерительный спай — непосредственно в катализаторе.

Для термохимического газоанализатора необходимо в качестве материала для ЧЭ (чувствительного элемента) использовать материал со значительным температурным коэффициентом сопротивления (ТКС). Обычно применяют платину, так как она обладает высокой химической инертностью, сравнительно высоким ТКС, линейной зависимостью ТКС от температуры (до 1200 °С). Сочетание высокой каталитической активности с химической инертностью позволяет также широко использовать платину в качестве материала для ЧЭ термохимических газоанализаторов, одновременно выполняющих роль катализатора.

Рис. 3. Измерительные ячейки термохимического газоанализатора:

а — без катализатора: 1 — платиновая нить; 2 — держатель; 3 — измерительная ячейка;

б — чувствительный элемент расположен в катализаторе: 1 — чувствительный элемент; 2 — измерительная ячейка; 3 — катализатор; 4 — термостат;

в — чувствительный элемент расположен в керамической трубке; 1 — камера; 2 — катализатор; 3—электриче­ская спираль; 4 — чувствительный элемент; 5 — керамическая трубка

В ячейке (рис. 3, а) проба АГС проходит через измерительную ячейку 3, в которой размещен ЧЭ в виде платиновой нити 1, укрепленной на держателях 2. Платиновая нить нагревается электрическим током до температуры, при которой происходит реакция. Выделившаяся теплота сгорания повышает температуру нити, увеличение температуры пропорционально концентрации определяемого компонента. Повышение температуры измеряется по изменению сопротивления нити, включенной, как правило, в схему электрического четырехплечего моста.

В ячейке (рис. 3, б) предусмотрено использование катализатора 3, в котором размещен ЧЭ 1. Обычно такая измерительная ячейка 2 размещается в термостате 4. При протекании пробы АГС через измерительную ячейку на катализаторе происходят соответствующая реакция, сопровождающаяся выделением тепла. Изменение температуры катализатора измеряется ЧЭ. Такой тип измерительной ячейки реализован в газоанализаторе ТХГ-5, где используются две измерительные ячейки: рабочая, через которую пропускают пробу АГС, и сравнительная с инертным газом.

Ячейка (рис. 3, в) представляет собой камеру 1, обогреваемую электрической спиралью 3. В камере расположена керамическая трубка 5, часть внешней поверхности которой покрыта катализатором 2. В керамической трубке находится ЧЭ 4, измеряющий ее температуру. Такой тип измерительной ячейки используют при создании газоанализатора на кислород в азоте.

Электрохимические методы

Из электрохимических методов анализа состава газов для определения концентрации кислорода наибольшее распространение получили полярографический, кондуктометрический, кулонометрический и потенциометрический методы

анализа.

Полярографический метод

Основан на поляризации погруженного в электролит индикаторного или вспомогательного электрода.

В зависимости от того, будет поляризующийся электрод катодом или анодом электролитической ячейки, причиной поляризации явятся различные восстановительные или соответственно окислительные процессы, которые вызовут сдвиг потенциала электрода соответственно в отрицательную или положительную сторону.

1 — анод (слой ртути на дне ячейки); 2— электролит; 3 — катод (ртутный капельный электрод); 4 — микроамперметр; 5 — рео­стат; 6— источник питания. Ток, проходящий через ячейку, измеряют микро­амперметром 4, а напряжение, подаваемое на ячейку, регулируют перемещением движка на реостате 5 от нуля (крайнее нижнее положение) до максимума (крайнее верхнее положение).

Гальванический метод анализа состава содержит катодный и анодный узлы, а также электролит, например КОН, загущенный крахмалом, В такой электрохимической ячейке с катодом (индикаторным электродом) из позолоченной никелевой проволоки и кадмиевым анодом происходит реакция.

Рис. 6. Ячейки с индикаторным электродом:

а – ртутным: 1 — ртутный капельный электрод; 2 — сосуд; 3 — перелив;

б - графито­вым: 1— графитовый индикаторный электрод; 2 — сосуд; 3 — анод;

в — золотым (сере­бряным): 1— контактный термометр; 2 — свинцовый электрод сравнения; 3 — крышка; 4 — нагревательный элемент; 5 — серебряный индикаторный электрод; 6 — корпус; 7 — металлический диск

Ячейка с ртутным индикаторным электродом (рис. 6, а) снаб­жена капиллярным ртутным капельным электродом 1, установлен­ным в сосуде 2, содержащем электролит (раствор соляной кисло­ты), поступающий в сосуд из специальной емкости. Ртуть в капил­лярный электрод поступает из емкости, в которой она хранится. Выдыхаемый воздух подается в ячейку навстречу движущемуся вдоль капельного электрода электролиту, что обеспечивает образо­вание равномерной пленки электролита на поверхности капилляра и установление полного равновесия раствор — газовая смесь, а также систематическое образование капель электролита в ниж­ней части капилляра.

Электролиз осуществляется в каждой капле электролита, сво­бодно висящей на конце капиллярного электрода. В такой ячейке уровень электролита под капилляром поддерживается строго по­стоянным с помощью перелива 3, соединенного с сосудом 2, на дне которого находится постоянный слой ртути, служащий анодом.

Ячейка с графитовым индикаторным электродом (рис. 6, б) со­стоит из графитового индикаторного электрода 1, сосуда 2 и анода 3, покрытого ртутной амальгамой. В качестве электролита исполь­зуют раствор серной кислоты, содержащий в качестве деполяри­заторов анода CdSO4 или ZnSO4, чем достигается постоянство его потенциала. Анализатор, где используется указанная ячейка (ана­лизатор Новака), предназначен для определения концентра­ции кислорода в технических газах в пределах 0—1 % (об.) с по­стоянной времени 10 с.

Ячейка с золотым (серебряным) индикаторным электродом (рис. 7, в) состоит из корпуса 6, выполненного из органического стекла, крышки из нержавеющей стали 3, на которой закреплен серебряный индикаторный электрод 5, свинцового электрода сравнения 2, нагревательного элемента 4, контактного термо­метра 1. На дне корпуса размещен металлический диск 7, приводимый в движение магнитной муфтой и предназначенный для перемешивания электролита. В качестве электролита исполь­зуют раствор уксусной кислоты, гидроксила натрия и ацетата свинца.

Кулонометричесий метод.

Основан на измерении количества электричества, затраченного на электрохимическое превращение. При подаче на электроды кулонометрической ячейки соответ­ствующего потенциала происходит электрохимическое восста­новление или окисление вещества. Для электрохимической реак­ции можно определить массу окисленного вещества.

Потенциометрический метод.

При соприкосновении двух металлов, металла с раствором, двух растворов и т. п. между ними образуется разность потенциа­лов, которая известна как потенциал границы раздела фаз.

В твердоэлектролитной (ТЭ) ячейке камера 1 разделена на две части мембраной 2 из ТЭ (рис. 11, а). На поверхность мембраны нанесены газопроницаемые электроды 3, выполненные из металла, не вступающего в химическое взаимодействие с пробой АГС. С одной стороны мембрана омывается сравнительным газом с известной концентрацией кислорода, а с другой — пробой АГС. Разность потенциалов между электродами является функ­цией концентрации кислорода в пробе АГС.

На потенциометрическом методе основан принцип действия газоанализаторов для определения кислорода „Циркон" и "Флю­орит".

Рис. 8. Твердоэлектролитная ячейка:а — в потенциометрическом режиме: 1 — камера; 2 — мембрана; 3 — электроды; б — в ку-лонометрическом режиме: 1,3 — электроды; 2 — Твердоэлектролитная ячейка; 4 — источ­ник постоянного тока; 5 — прибор для измерения силы тока

В кулонометрическом режиме проба АГС поступает в ячейку 2 (рис. 8,б), выполненную из ТЭ в виде трубки, на внешнюю и внутреннюю поверхность которой нанесены электроды 1 и 3. К электродам приложено напряжение от источника постоянного тока 4 и последовательно с ними подключен прибор для измере­ния электрического тока 5.

Оптические методы.

Принцип работы основан на измерении степени поглощения газом прерывистого потока инфракрасной радиации. Излучения инфракрасной области спектра поглощаются газами, молекулы которых состоят из двух или большего числа различных атомов и ионов. В теплоэнергетике их применяют для измерений СО2; СО; СН4.

Оптико-акустический эффект состоит в следующем: при воздей­ствии на газ (находящийся в замкнутом объеме) прерывистым потоком инфракрасной радиации происходит пульсация температуры, а следовательно, и давления этого газа. Эта пульсация, воздейст­вуя на микрофон, вызывает «звучание» газа.

На рис. 10 приведена принципиальная схема газоанализатора. Инфракрасное излучение от двух источников 1 направляется по двум каналам (рабочему и сравнительному), проходя при этом через обтюратор 2,который шесть раз в секунду прерывает оба потока одно­временно. Прерывистые потоки излучения проходят через фильтровые камеры 3 заполненные обычно данной смесью газа, из которой исключен анализируемый компонент. Наличие фильт­ровых камер обеспечивает уменьшение погрешности за счет возможного частичного наложения спектров поглощения анализируемой и не анализируемой составляющей газовой смеси. Далее поток радиации, направленный по рабочему каналу, проходит ра­бочую камеру 4, через которую непрерывно пропускается анали­зируемая газовая смесь. Анализируемая составляющая газа по­глощает часть энергии, определяемой поглощающей способностью этого газа. Остаток лучистой энергии после отражения от пла­стины 5 поступает в правую область луче приемника 6. Лучистый поток, проходящий по сравнительному каналу, после фильтровой камеры 3 попадает в компенсационную камеру 8. Компенсацион­ная камера заполнена анализируемой составляющей смеси. На по­верхности этой камеры имеются окна из специального стекла (Li+F) 7 свободно пропускающего инфракрасные лучи. Внутри компенсационной камеры имеется отражательное зеркало, которое направляет лучистый поток в левую область луче приемника 6. Если в правую и левую области луче приемника поступают различные по величине прерывистые потоки излучения, то конденсаторный микрофон 15, помещенный в луче приемнике, создает звуковой сигнал, который после усиления усилителем 14 воздействует на реверсив­ный двигатель 12. Реверсивный двигатель с помощью редуктора 11 перемещает отражательное зеркало 13 до тех пор, пока поток сравнительного канала не уравняется с потоком, поступающим в луче приемник по рабочему каналу. При равенстве этих потоков звучание микрофона прекращается. Перемещение отражательного зеркала внутри уравнительной камеры вызывает изменение ее объема, т. е. изменение пути движения газа, что приводит к измене­нию поглощения лучистой энергии. Одновременно с редуктором перемещается движок реохорда 9 вторичного прибора 10.







Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.