Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Теорема Фостера о сопротивлении реактивного двухполюсника





Комплексное сопротивление реактивного двухполюсника можно представить функцией, выраженной через ее нули и полюса (резонансные частоты):

(1),

где Н – некоторый множитель, положительное вещественное число;

ω – угловая частота;

ωк – резонансные частоты (математически нули и полюсы). Принято в числителе использовать нечетные индексы (нули функции сопротивления ДП) в знаменателе четные (полюсы функции сопротивления ДП).

Из этой формулы можно получить частные случаи, соответствующие классам двухполюсников. Для классов 0 - ∞, 0 – 0 ω1=0. Для классов ∞ - 0, ∞ - ∞ .

 

Производная по частоте всегда положительная:

Нули и полюсы всегда чередуются.

Старшая и младшая степени полиномов числителя и знаменателя отличаются не более, чем на единицу (нули и полюсы в начале и конце координат – простые).

Дробь (1) представляет собой либо отношение нечетного полинома к четному, либо четного к нечетному.

Множитель Н по своему смыслу соответствует эквивалентной индуктивности или величине, обратной эквивалентной емкости при .

Канонические схемы Фостера

Канонические схемы – стандартные схемы или схемы, построенные по определенному правилу.

Первая схема Фостера

 

Первые элементы обозначаются на схеме следующим образом: , далее- четным, а последние . Индексы показывают, на какой частоте происходит полюс у этого элемента или пары элементов.

Для анализа такой схемы удобно воспользоваться операторным сопротивлением:

(здесь четные индексы – полюсы функции сопротивления). Это выражение можно преобразовать в общую дробь:

(в числителе нечетные индексы в знаменателе четные). В знаменателе столько скобок, сколько параллельных контуров в схеме.

Класс реактивного двухполюсника здесь определяет только первая пара элементов (если есть оба элемента, то класс ∞ - ∞; нет ни одного 0 – 0; есть только индуктивность 0 - ∞; есть только емкость ∞ - 0). Пример графика для класса ∞ - ∞;

Существует правило для канонических схем: количество элементов в канонической схеме минимальное для получения заданной функции сопротивления (заданного количества резонансных частот, т.е. внутренних нулей и полюсов). Количественно их на единицу больше общего числа резонансных частот (внутренних нулей и полюсов). Также самая старшая степень полинома числителя или знаменателя равна количеству элементов. может равняться при ω→∞ ∞ или 0. При этом емкости заменяются перемычкой, индуктивности заменяются разрывом. Если = ∞, то в первой схеме Фостера и Н малая величина, если =0, то - большая величина. Тогда в первой схеме Фостера; при последовательном соединении с учетом схемы при ω→∞

Вторая схема Фостера

Эта схема дуальна первой схеме Фостера. Первые элементы обозначаются на схеме следующим образом: , далее- нечетным, а последние . Индексы соответствуют полюсам проводимости. Элементы определяют класс двухполюсника (если есть оба элемента, то класс двухполюсника , если нет обоих элементов, то и т.д.). Количество последовательных контуров соответствует количеству резонансных частот напряжения (или скобок в числителе - нулей сопротивления).



 

 


Здесь в общем виде удобно записать формулу проводимости:

(здесь индексы нечетные –нули функции сопротивления или полюсы проводимости)

Множитель находится аналогично во второй схеме Фостера. на основе схемы замещения при ω→∞. Если = ∞, то во вторвой схеме Фостера и Н малая величина, если =0, то - большая величина. Тогда во второй схеме Фостера; при последовательном соединении с учетом схемы при ω→∞

Канонические схемы Кауэра

1-ая схема Кауэра

 

Такая схема называется лестничной или цепной схемой. Сопротивление удобно записать в виде лестничной или цепной дроби:

 

Класс ДП определяют первый и последний элементы. Если есть оба элемента, то класс ДП

∞-∞; нет ни одного элемента то 0- 0. Количество элементов соответствует старшей степени полинома (на единицу больше числа резонансных частот). В частном случае, если мало элементов, то эта схема может совпадать со схемами Фостера. Множитель также определяется при устремлении ω→∞. Например: Класс ДП 0 – 0 и он содержит 4 элемента (старшая степень равна4 и три резонансных частоты).

X(ω)

 

0 ω2 ω3 ω4 ω

 

2- ая схема Кауэра

 

Первый и последний элементы определяют класс ДП.

 

Одну и ту же функцию сопротивления реактивного ДП можно получить различными схемами, например, одной из четырех выше описанных. Тогда эти схемы называются эквивалентными (их сопротивление одинаково при любой частоте).









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.