Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Голод и насыщение: мозговые центры, нервные и гуморальные воздействия на них, исходящие из ЖКТ. Пищевое поведение.





Голод – состояние организма, возникающее при длительном отсутствии пищи, в результате возбуждения латеральных ядер гипоталамуса. Для чувства голода характерны два проявления:

1) объективное (возникновение голодовых сокращений желудка, приводящих к пищедобывающему поведению);

2) субъективное (неприятные ощущения в эпигастральной области, слабость, головокружение, тошнота).

Выделено два пути влияния:

1) рефлекторный (через хеморецепторы рефлексогенных зон сердечно-сосудистой системы);

2) гуморальный (бедная питательными веществами кровь притекает к нейронам гипоталамуса и вызывает их возбуждение).

Согласно «периферической» теории голодовые сокращения желудка передаются на латеральные ядра и приводят к их активации.

Аппетит – страстное желание еды, эмоциональные ощущения, связанные с приемом пищи. Он возникает на уровне коры больших полушарий по принципу условного рефлекса и не всегда в ответ на состояние голода, а иногда и на снижение уровня питательных веществ в крови (в основном глюкозы). Появление чувства аппетита связано с выделением большого количества пищеварительных соков, содержащих высокий уровень ферментов.

Насыщение возникает при удовлетворении чувства голода, сопровождающееся возбуждением вентромедиальных ядер гипоталамуса по принципу безусловного рефлекса. Существует два вида проявлений:

1) объективные (прекращение пищедобывающего поведения и голодовых сокращений желудка);

2) субъективные (наличие приятных ощущений).

В настоящее время разработано две теории насыщения:

1) первичная сенсорная; 2) вторичная или истинная.

Первичная теория основана на раздражении механорецепторов желудка. Доказательство: в опытах при введении в желудок животного баллончика через 15–20 мин наступает насыщение, сопровождающееся повышением уровня питательных веществ, взятых из депонирующих органов.

Согласно вторичной (или метаболической) теории истинное насыщение возникает лишь спустя 1,5–2 ч после приема пищи. В результате повышается уровень питательных веществ в крови, приводящих к возбуждению вентромедиальных ядер гипоталамуса. За счет наличия реципрокных взаимоотношений в коре больших полушарий наблюдается торможение латеральных ядер гипоталамуса.

Таким образом, пищевой центр регулирует деятельность системы пищеварения и обеспечивает различные формы пищедобывающего поведения организмам человека и животных.

Пищевой центр — сложное образование, компоненты которого локализуются в продолговатом мозге, гипоталамусе и в коре большого мозга и функционально объединены между собой. В продолговатом мозге располагается бульбарное звено пищевого центра — ядра V, VII, IX и X пар черепных нервов. Большая роль в регуляции всех этапов процесса пищеварения принадлежит ядрам гипоталамуса. Вентро-медиальные ядра гипоталамуса получили название «центра насыщения», латеральные — «центра питания». В регуляции процессов питания и пищеварения существенная роль принадлежит коре большого мозга, особенно тем ее отделам, которые являются мозговыми концами вкусового и обонятельного анализаторов.

Деятельность пищевого центра многообразна. За счет его активности формируется пищедобывательное поведение (пищевая мотивация), при этом происходит сокращение скелетной мускулатуры (пищу надо найти, обработать, приготовить). Пищевой центр регулирует моторную, секреторную и всасывательную функции желудочно-кишечного тракта, обеспечивает возникновение сложных субъективных ощущений, таких как голод, аппетит, чувство сытости и жажды.

 

Гомеотермия (гомойотермия). Терморецепция и роль гипоталамического термостата. Термогенез сократительный и несократительный. Теплоотдача: механизмы, эффективность, регуляция. Гипо- и гипертермия. Лихорадка.

Обмен тепловой энергии между организмом и окружающей средой называется теплообменом. Один из показателей теплообмена - температура тела, которая зависит от двух факторов: образования тепла, то есть от интенсивности обменных процессов в организме, и отдачи тепла в окружающую среду.

Животные, температура тела которых изменяется в зависимости от температуры внешней среды, называются пойкилотермными, или холоднокровными. Животные с постоянной температурой тела называются гомойотермными (теплокровными). Постоянство температуры тела называется изотермией. Она обеспечивает независимость обменных процессов в тканях и органах от колебаний температуры окружающей среды.

Температура отдельных участков тела человека различна. Наиболее низкая температура кожи отмечается на кистях и стопах, наиболее высокая — в подмышечной впадине, где ее обычно и определяют. У здорового человека температура в этой области равна 36—37° С. В течение суток наблюдаются небольшие подъемы и спады температуры тела человека в соответствии с суточным биоритмом: минимальная температура отмечается в 2—4 ч ночи, максимальная — в 16—19 ч.

Способность поддерживать температуру на постоянном уровне обеспечивается за счет взаимосвязанных процессов – теплообразования и выделения тепла из организма во внешнюю среду. Если теплообразование равно теплоотдаче, то температура тела остается постоянной. Процесс образования тепла в организме получил название химической терморегуляции, процесс, обеспечивающий удаление тепла из организма, - физической терморегуляции.

Химическая терморегуляция. Тепловой обмен в организме тесно связан с энергетическим. При окислении органических веществ выделяется энергия. Часть энергии идет на синтез АТФ. Эта потенциальная энергия может быть использована организмом в дальнейшей его деятельности. Источником тепла в организме являются все ткани. Кровь, протекая через ткани, нагревается.

Повышение температуры окружающей среды вызывает рефлекторное снижение обмена веществ, вследствие этого в организме уменьшается теплообразование. При понижении температуры окружающей среды рефлекторно увеличивается интенсивность метаболических процессов и усиливается теплообразование. В большей степени увеличение теплообразования происходит за счет повышения мышечной активности. Непроизвольные сокращения мышц (дрожь) являются основной формой повышения теплообразования.

Сократительный термогенез, включающий терморегуляторное миотоническое состояние и мышечную дрожь скелетных мышц, является одним из главных механизмов теплопродукции в организме и повышения температуры тела при лихорадке. Доказательством этому является то, что фармакологическая блокада сократительного термогенеза (например, с помощью миорелаксантов) увеличивает латентный период лихорадочной реакции и снижает (но не устраняет) повышение температуры тела.

Несократительный термогенез является другим важным механизмом теплопродукции при лихорадке. Причины: активация симпатических влияний на метаболические процессы и повышение уровня тиреоидных гормонов в крови.

Физическая терморегуляция. Этот процесс осуществляется за счет отдачи тепла во внешнюю среду путем конвекции (теплопроведения), радиации (теплоизлучения) и испарения воды.

Конвекция - непосредственная отдача тепла прилегающим к коже предметам или частицам среды. Отдача тепла тем интенсивнее, чем больше разница температур между поверхностью тела и окружающим воздухом.

Теплоотдача увеличивается при движении воздуха, например при ветре. Интенсивность отдачи тепла во многом зависит от теплопроводности окружающей среды. В воде отдача тепла происходит быстрее, чем на воздухе. Одежда уменьшает или даже прекращает теплопроведение.

Радиация - выделение тепла из организма происходит путем инфракрасного излучения с поверхности тела. За счет этого организм теряет основную массу тепла. Интенсивность теплопроведения и теплоизлучения во многом определяется температурой кожи. Теплоотдачу регулирует рефлекторное изменение просвета кожных сосудов. При повышении температуры окружающей среды происходит расширение артериол и капилляров, кожа становится теплой и красной. Это увеличивает процессы теплопроведения и теплоизлучения. При понижении температуры воздуха артериолы и капилляры кожи суживаются. Кожа становится бледной, количество протекающей через ее сосуды крови уменьшается. Это приводит к понижению ее температуры, теплоотдача уменьшается, и организм сохраняет тепло.

Испарение воды с поверхности тела (2/з влаги), а также в процессе дыхания (1/з влаги). Испарение воды с поверхности тела происходит при выделении пота. Даже при полном отсутствии видимого потоотделения через кожу испаряется в сутки до 0,5 л воды — невидимое потоотделение. Испарение 1 л пота у человека с массой тела 75 кг может понизить температуру тела на 10° С.

В состоянии относительного покоя взрослый человек выделяет во внешнюю среду 15% тепла путем теплопроведения, около 66% посредством теплоизлучения и 19% за счет испарения воды.В среднем человек теряет за сутки около 0,8 л пота, а с ним 500 ккал тепла.

Центры регуляции теплообмена. Терморегуляция осуществляется рефлекторно. Колебания температуры окружающей среды воспринимаются терморецепторами. В большом количестве терморецепторы располагаются в коже, в слизистой оболочке полости рта, верхних дыхательных путях. Обнаружены терморецепторы во внутренних органах, венах, а также в некоторых образованиях центральной нервной системы.

Терморецепторы кожи очень чувствительны к колебаниям температуры окружающей среды. Они возбуждаются при повышении температуры среды на 0,007° С и понижении — на 0,012° С.

Нервные импульсы, возникающие в терморецепторах, по афферентным нервным волокнам поступают в спинной мозг. По проводящим путям они достигают зрительных бугров, а от них идут в гипоталамическую область и к коре большого мозга. В результате возникают ощущения тепла или холода.

 

В спинном мозге находятся центры некоторых терморегуляторных рефлексов. Гипоталамус является основным рефлекторным центром терморегуляции. Передние отделы гипоталамуса контролируют механизмы физической терморегуляции, т. е. они являются центром теплоотдачи. Задние отделы гипоталамуса контролируют химическую терморегуляцию и являются центром теплообразования.

Важная роль в регуляции температуры тела принадлежит коре головного мозга. Эфферентными нервами центра терморегуляции являются главным образом симпатические волокна.

В регуляции теплообмена участвует и гормональный механизм, в частности гормоны щитовидной железы и надпочечников. Гормон щитовидной железы — тироксин, повышая обмен веществ в организме, увеличивает теплообразование. Поступление тироксина в кровь возрастает при охлаждении организма. Гормон надпочечников — адреналин — усиливает окислительные процессы, увеличивая тем самым теплообразование. Кроме того, под действием адреналина происходит сужение сосудов, в частности сосудов кожи, за счет этого уменьшается теплоотдача.

Приспособление организма к пониженной температуре окружающей среды. При понижении температуры окружающей среды происходит рефлекторное возбуждение гипоталамуса. Повышение его активности стимулирует гипофиз, результатом чего является усиленное выделение тиреотропина и кортикотропина, повышающих активность щитовидной железы и надпочечников. Гормоны данных желез стимулируют теплопродукцию.

Таким образом, при охлаждении включаются защитные механизмы организма, повышающие обмен веществ, теплообразование и уменьшающие теплоотдачу.

В реальной жизни процессы теплопродукции не всегда соответствуют процессам теплоотдачи. Так, в случае преобладания одного из процессов над другим температура ядра меняется. Температура может изменяться под влиянием эндогенных или экзогенных факторов. Например, при воздействии низкой температуры параллельно с интенсификацией процессов теплопродукции для уменьшения теплоотдачи сужаются сосуды кожи. Но при очень низкой температуре это может привести отморожения. Поэтому обычно после сужения кровеносные сосуды могут расширяться и кровь снова движется к коже. Это местная реакция обусловлена локальным Термочувствительность мышц сосудов и хорошо выражена в адаптированных к холоду людей.

В условиях очень низкой окружающей температуры расширение сосудов кожи может привести к увеличению теплопотерь, снижение температуры ядра, и человек может замерзнуть. Снижение температуры ядра, согласно правилу Вант-Гоффа, сопровождается снижением активности обменных процессов. Смерть при охлаждении наступает при температуре ядра 26-28 ° С. Но еще перед этим низкая температура приведет к резкому угнетению активности нейронов ЦНС, в «засыпания» и обмороки.

Указанную зависимость сегодня используют с лечебной целью, когда нужно на время отключить кровообращение, чтобы сделать операцию на сердце. Такой метод называется управляемой гипотермией. Для его осуществления используют принцип постепенного экстракорпорального охлаждения крови. Предварительно под соответствующим наркозом необходимо отключить центр терморегуляции. Конечно, температуру тела постепенно снижают до 23-25 ° С, что позволяет на 20-ЗО мин остановить кровообращение. Затем, также постепенно, температуру повышают. Конечно, охлажденное сердце самостоятельно не сможет «запуститься». Его сокращение стимулируют с помощью дефибриллятора.

Противоположный гипотермии состояние называют гипертермией. Гипертермия наблюдается и у здоровых людей. Это происходит, например, при интенсивной физической работы, когда теплоотдача отстает от теплотворности. Высокая окружающая температура, особенно при высокой влажности, интенсивное воздействие солнца также могут вызвать гипертермию. При повышении температуры тела более 41 ° С развивается отек мозга, нарушается процесс терморегуляции и без медицинской помощи может наступить смерть.

Гипертермия сопровождает многие болезни. Полагают, что механизм появления лихорадки обусловлен смещением "заданного значения» температуры в гипоталамическом центре. Изменение функции центра является следствием воздействия на него пирогенов - полисахаридов бактериальных мембран, которые поступают в кровь и вызывают синтез лейкоцитарных пирогенов. Вследствие изменения «заданного уровня» центр терморегуляции за «норму» считает другую температуру и налаживает все механизмы терморегулирования на новом уровне. Повышение температуры происходит вследствие дрожания, уменьшение потоотделения и сужение сосудов кожи. Вывод пирогенов способствует повышению активности механизмов теплоотдачи: усиливается потоотделение, расширяются сосуды кожи, и температура тела снижается.

 

Общий обмен, его составляющие. Основной обмен: величина; процессы, им оеспечиваемые; факторы,на него влияющие; методы оценки. Специфическое динамическое действие пищи. Энерготраты человека при различных видах деятельности.

Обмен веществ и энергии, или метаболизм,— совокупность химических и физических превращений веществ и энергии, происходящих в живом организме и обеспечивающих его жизнедеятельность. Обмен веществ и энергии составляет единое целое и подчиняется закону сохранения материи и энергии.

Обмен веществ складывается из процессов ассимиляции и диссимиляции. Ассимиляция (анаболизм) — процесс усвоения организмом веществ, при котором расходуется энергия. Диссимиляция (катаболизм) — процесс распада сложных органических соединений, протекающий с высвобождением энергии.

Единственным источником энергии для организма человека является окисление органических веществ, поступающих с пищей. При расщеплении пищевых продуктов до конечных элементов — углекислого газа и воды,— выделяется энергия, часть которой переходит в механическую работу, выполняемую мышцами, другая часть используется для синтеза более сложных соединений или накапливается в специальных макроэргических соединениях.

Макроэргическими соединениями называют вещества, расщепление которых сопровождается выделением большого количества энергии. В организме человека роль макроэргических соединений выполняют аденозинтрифосфорная кислота (АТФ) и креатинфосфат (КФ).

Под основным обменом понимают минимальный уровень энергозатрат, необходимых для поддержания жизнедеятельности организма в условиях относительно полного физического, эмоционального и психического покоя. В состоянии относительного покоя энергия затрачивается на осуществление функций нервной системы, постоянно идущий синтез веществ, работу ионных насосов, поддержание температуры тела, деятельность дыхательной мускулатуры, гладких мышц, работу сердца и почек. Энергозатраты организма возрастают при физической и умственной работе, психоэмоциональном напряжении, после приема пищи, при понижении температуры среды. Для того, чтобы исключить влияние перечисленных факторов на величину энергозатрат, определение основного обмена проводят в стандартных строго контролируемых условиях: утром, в положении лежа, при максимальном расслаблении мышц, в состоянии бодрствования, в условиях температурного комфорта (около 22 °С), натощак (через 12—14 ч после приема пищи). Полученные в таких условиях величины основного обмена характеризуют исходный «базальный» уровень энергозатрат организма. Для взрослого человека среднее значение величины основного обмена равно 1 ккал/кг/ч (4,19 кДж). Следовательно, для взрослого мужчины массой 70 кг величина энергозатрат составляет около 1700 ккал/сут (7117 кДж), для женщин — около 1500 ккал/сут. Интенсивность основного обмена тесно связана с размерами поверхности тела, что обусловлено прямой зависимостью величины отдачи тепла от площади поверхности тела. У теплокровных организмов, имеющих разные размеры тела, с 1 м2 поверхности тела в окружающую среду рассеивается одинаковое количество тепла. На этом основании сформулирован закон поверхности тела, согласно которому энергетические затраты теплокровного организма пропорциональны величине поверхности тела.

Для определения количества затрачиваемой организмом энергии применяют прямую и непрямую калориметрию. Первые прямые измерения энергетического обмена провели в 1788 г. Лавуазье и Лаплас.

Прямая калориметрия заключается в непосредственном измерении тепла, выделяемого организмом. Для этого животное или человек помещается в специальную герметическую камеру, по трубам, проходящим через нее, протекает вода. Для вычисления теплопродукции используются данные о теплоемкости жидкости, ее объеме, протекающем через камеру за единицу времени, и разности температур поступающей в камеру и вытекающей жидкости.

Непрямая калориметрия основана на том, что источником энергии в организме являются окислительные процессы, при которых потребляется кислород и выделяется углекислый газ. Поэтому энергетический обмен можно оценивать, исследуя газообмен. Наиболее распространен способ Дугласа-Холдейна, при котором в течение 10-15 мин собирают выдыхаемый обследуемым человеком воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа). Затем определяют объем выдохнутого воздуха и процентное содержание в нем О2 и СО2.

По соотношению между количеством выделенного углекислого газа и количеством потребленного за данный период времени кислорода - дыхательному коэффициенту (ДК) - можно установить, какие вещества окисляются в организме. ДК при окислении белков равен 0,8, при окислении жиров - 0,7, а углеводов - 1,0. Каждому значению ДК соответствует определенный холерический эквивалент кислорода, т.е. то количество тепла, которое выделяется при окислении какого-либо вещества на каждый литр поглощенного при этом кислорода. Количество энергии на единицу потребляемого 02 зависит от типа окисляющихся в организме веществ. Калорический эквивалент кислорода при окислении углеводов равен 21 кДж на 1 л 02 (5 ккал/л), белков - 18,7 кДж (4,5 ккал), жиров - 19,8 кДж (4,74 ккал). Для косвенного определения интенсивности обмена могут быть использованы некоторые физиологические параметры, связанные с потреблением кислорода: частота дыханий и вентиляционный объем, частота сокращений сердца и минутный объем кровотока - все они отражают затраты энергии. Однако эти показатели недостаточно точны.

Специфическое действие пищи: После приема пищи интенсивность обмена веществ и энерготраты организма увеличиваются по сравнению с их уровнем в условиях основного обмена. Увеличение обмена веществ и энергии начинается через час, достигает максимума через 3 ч после приема пищи и сохраняется в течение нескольких часов. Влияние приема пищи, усиливающее обмен веществ и энергетические затраты, получило название специфического динамического действия пищи. При белковой пище оно наиболее велико: обмен увеличивается в среднем на 30 %. При питании жирами и углеводами обмен увеличивается у человека на 14—15 %.

 







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.