Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Развиваясь, гипотеза одновременно подвергается проверке, необходимость которой вытекает из самой сущности гипотезы как предположения.





ОСНОВНЫЕ ПОНЯТИЯ ПРОГНОЗИРОВАНИЯ

Статистическое прогнозирование, наряду с другими видами прогнозирования социально-экономических явлений и процессов, является инструментом социально-экономического управления и развития.

Прогнозирование — это вид познавательной деятельности человека, направленной на формирование прогнозов развития объектов, на основе анализа тенденций и закономерностей его развития.

Прогнозирование — это научное, основанное на системе установленных причинно-следственных связей и закономерностей, выявление состояния и вероятностных путей развития явлений и процессов.

Прогнозирование предопределяет оценку показателей и дает характеристику явлений и процессов в будущем. Прогнозирование распространяется на такие процессы управления, которые в момент выработки прогнозов можно определить в весьма малом диапазоне, либо совсем невозможно, либо возможно, но требует учета действия таких факторов, влияние которых не может быть полностью или однозначно определено.

В зависимости от степени конкретности и характера воздействия на ход исследуемых процессов и явлений можно выделить три основные понятия прогнозирования:

— гипотеза;

— предсказание;

— прогноз.

Данные понятия тесно взаимосвязаны в своих проявлениях друг с другом и с исследуемым объектом и представляют собой последовательные ступени познания поведения явления и объекта в будущем.

Гипотезаэто научно обоснованное предположение либо о непосредственно ненаблюдаемом факте, либо о закономерном порядке, объясняющем известную совокупность явлений.

На уровне гипотезы дается качественная характеристика объекта, выражающая общие закономерности его поведения.

Гипотезой является не всякая догадка, а лишь предположение, которое носит вероятный характер. Установив, что группа явлений, закономерная связь которых неизвестна, имеет ряд тождественных черт с другой группой явлений, закономерная связь которых уже установлена, делается вывод о вероятности частичного сходства искомой закономерной связи с уже определенной.

Развиваясь, гипотеза одновременно подвергается проверке, необходимость которой вытекает из самой сущности гипотезы как предположения.

Проверка гипотезы состоит в том, что все следствия, полученные посредством теоретического анализа основного допущения гипотезы сопоставляются с эмпирическими данными.

Если по одной и той же задаче, проблеме и так далее возникает одновременно несколько гипотез и известно, какие гипотезы здесь вообще возможны, а какие — нет, то доказательством истинности одной из рассматриваемых гипотез является установление ложности всех остальных.

Степень вероятности гипотезы тем выше, чем разнообразнее и многочисленнее ее следствия, подтвержденные эмпирическим путем.



Достаточность условий реализации гипотез, их вероятность теоретически и практически граничит с высокой степенью достоверности. Гипотеза оказывает воздействие на процесс через прогноз, являясь важным источником информации для его составления.

Предсказание — это предвидение таких событий, количественная характеристика которых невозможна или затруднена.

Прогноз— это количественное, вероятностное утверждение в будущем о состоянии объекта или явления с относительно высокой степенью достоверности, на основе анализа тенденций и закономерностей прошлого и настоящего.

Прогноз в сравнении с гипотезой имеет большую определенность и достоверность, так как основывается как на качественных, так и на количественных характеристиках. В отдельных случаях прогноз может носить качественный характер, но в его основе всегда лежат количественные явления.

Для осуществления прогноза, то есть определения понятий, как будет осуществляться и развиваться прогнозируемые явления в будущем, необходимо знать тенденции и закономерности прошлого и настоящего. При этом, следует помнить, что будущее зависит от многих случайных факторов, сложное переплетение и сочетание которых учесть практически невозможно. Следовательно, все прогнозы носят вероятностный характер.

 

 

КЛАССИФИКАЦИЯ ПРОГНОЗОВ

МЕТОДЫ ПРОГНОЗИРОВАНИЯ

Выбор методов прогнозирования осуществляется в соответствии с характером объекта, требований, предъявляемых к информационному обеспечению, а также на основе сравнения эффективности и оптимальности решения аналогичных задач.

Отличительной чертой социально-экономических явлений и процессов является инерционность, проявляющаяся, с одной стороны в сохранении взаимосвязей прогнозируемого явления с другими явлениями, а с другой — в сохранении тенденции во времени.

Для обеспечения научной обоснованности и достоверности социально-экономических прогнозов необходимо, чтобы в ходе их составления раскрывались и познавались причинно-следственные связи и факторы, характеризующие развитие процессов и явлений, изучались их внутренние структурные связи, а также внешняя среда, в которой они проявляются.

Основными этапами разработки статистических прогнозов являются:

1. Анализ объекта прогнозирования. На этом этапе рассматривается состояние, основные элементы, взаимосвязи и факторы, формирующие и оказывающие влияние на исследуемых объект; выдвигается основная рабочая гипотеза; выявляются причинно-следственные связи как внутри явления, так и вне его и определяется их статистическое выражение.

2. Характеристика информационной базы исследования. На данном этапе выдвигаются основные требования, предъявляемые к информационной базе. При этом различают количественную информацию, обработку которой осуществляют статистическими методами, и качественную информацию, сбор и обработка которой производится преимущественно эвристическими и непараметрическими статистическими методами анализа.

3.Выбор метода прогнозирования. Процесс выбора метода прогнозирования обусловлен объективизацией прогноза, которая обеспечивает реализацию наиболее точного и достоверного прогноза. С этой целью целесообразно использовать различную исходную информацию и несколько методов прогнозирования.

4. Построение исходной модели прогноза и ее реализация. Данный этап пред-

полагает, что основой построения прогноза является разработка достаточно адекватной исходной модели, обладающей прогностическими свойствами.

5. Проверка достоверности, точности и обоснованности прогноза. На данном этапе дается достоверная оценка процесса прогнозирования на основе расчета и анализа абсолютных, относительных и средних показателей точности прогноза. Надежность прогноза определяется, как правило, величиной доверительных интервалов.

ИЗУЧЕНИЕ ДИНАМИКИ ОБЩЕСТВЕННЫХ ЯВЛЕНИЙ

Ряды динамики. Классификация

Ряд динамики, хронологический ряд, динамический ряд, временной ряд - это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Всякий ряд динамики включает, следовательно, два обязательных элемента: во-первых, время и, во-вторых, конкретное значение показателя, или уровень ряда. Ряды динамики различаются по следующим признакам.

1. По времени - моментные и интервальные ряды.

Интервальный ряд динамики - последовательность, в которой уровень явления относится к результату, накопленному или вновь произведенному за определенный интервал времени. Таковы, например, ряды показателей объема продукции по месяцам года, количества отработанных человеко-дней по отдельным периодам и т. д. Если же уровень ряда показывает фактическое наличие изучаемого явления в конкретный момент времени, то совокупность уровней образует моментный ряд динамики. Примерами моментных рядов могут быть последовательности показателей численности­ населения на начало года, величины запаса какого-либо материала на начало периода и т. д. Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда дает вполне реальный показатель - общий выпуск продукции за год, общие затраты рабочего времени, общий объем продаж акций и т. д., сумма же уровней моментного ряда, хотя иногда и подсчитывается, но реального содержания, как правило, не имеет.

2. По форме представления уровней - ряды абсолютных, относительных и средних величин (табл. 1 - 3).

Абсолютный прирост,

Темпы роста,

Темпы прироста,

Средние показатели рядов динамики являются обобщающей характеристикой его абсолютных уровней, абсолютной скорости и интенсивности изменения уровней ряда динамики. Различают следующие средние показатели: средний уровень ряда динамики, средний абсолютный прирост, средний темп роста и прироста.

ПОКАЗАТЕЛИ, ХАРАКТЕРИЗУЮЩИЕ

СЕЗОННЫЕ КОЛЕБАНИЯ

 

Среди периодических колебаний особое место занимают те, которые проявляются с правильной годичной периодичностью, так как приурочены к определенным временам года, или сезонам.

Характерной особенностью сезонных колебаний является то, что они, будучи частью экономического явления и процесса, тем не менее, обладают самостоятельностью. Она состоит в том, что сезонные периоды возникают независимо от хозяйственного положения и проявляются как в период подъема, так и в периоды спада. Они как бы накладываются на кривую общего движения и на долгопериодические колебания, вследствие чего сезонные колебания наблюдаются во всех фазах экономического развития. Сезонные подъемы благоприятно воздействуют на хозяйственный результат, а сезонные спады – отрицательно.

Измерение сезонных колебаний состоит из определения двух видов показателей:

· Показатели, характеризующие форму сезонных колебаний;

· Показатели силы сезонных колебаний.

Аналитическое выравнивание может быть осуществлено по любому рациональному многочлену. Выбор функции производится на основе анализа характера закономерностей динамики данного явления, на основе графического изображения уровней динамического ряда.

Наиболее часто для аппроксимации используются функции:

• линейная ;

• парабола второго порядка ;

• показательная ;

• гиперболическая ;

· экспоненциальные ­ f­(t) = ехр (а0 + а­1t )

или ­ f­(t) = ехр(а0 + а­1t+ а­2t2­)

В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющийся во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически. В результате приходят к трендовой модели

Yt = f­(t) + et.

где f­(t) - уровень, определяемый тенденцией развития;

et - случайное и циклическое отклонение от тенденции.

Оценка параметров (а0,а­1,а­2­,....)осуществляется следующими методами:

1) методом избранных точек,

2) методом наименьших расстояний,

3) методом наименьших квадратов (МНК).

В большинстве расчетов используют метод наименьших квадратов, который обеспечивает наименьшую сумму квадратов отклонений фактических уровней от выравненных теоретических:

Для линейной зависимости f­(t) = а0 + а­1t параметр а0, обычно интерпретации не имеет, но иногда его рассматривают как обобщенный начальный уровень ряда; а1 - сила связи, т. е. параметр, показывающий, насколько изменится результат при изменении времени на единицу. Таким образом, а­ можно представить как постоянный теоретический абсолютный прирост.

Расчеты значительно упрощаются, если начало отсчета времени поместить в середину динамического ряда, тогда сумма временных дат будет равна нулю Σt = 0, и система нормальных уровней значительно упрощается и преобразуется в следующий вид:

 

Решение системы уравнений позволяет получить выражения для параметров и :

откуда: представляет собой средний уровень ряда динамики ( );

.

Аналитическое выравнивание позволяет не только определить основную тенденцию изменения явления на исследуемом отрезке времени, но выполнять расчеты для таких периодов, для которых нет информации. Нахождение недостающих данных внутри динамического ряда называется интерполяцией, а нахождение значений за пределами анализируемого периода называется экстраполяцией.

Для аппроксимации процесса изменения во времени используют несколько моделей, а наилучшую пригодность проверяют на основе принципа минимизации квадратов отклонений фактических и выравненных (теоретических) значений динамического ряда.

Рис.Динамика числа занятых в народном хозяйстве в России на 31 декабря каждого года

Таблица : Исходные и расчетные данные для определения параметров системы уравнения

Годы Млн.т t t2   tYi Yi- (Yi- )2
13,3 -2 -26,6 13,02 0,28 0,08
13,5 -1 -13,5 13,94 -0,44 0,19
14,8 14,86 -0,0 0,00
16,1 16,1 15,78 -0,32 0,10
16,6 33,2 16,70 -0,1 0,01
Итого 74,3 - 9,2 74,30 - 0,38

 

Для выравнивания ряда динамики по прямой используем уравнение

Способ наименьших квадратов дает систему двух нормальных уравнений для нахождения параметров и :

где y – исходный уровень ряда динамики;

n - число уровней ряда ;

t – показатель времени, который обозначается порядковыми номерами, начиная с низшего. Например:

Годы 2009 2010 2011 2012 2013

t 1 2 3 4 5

Решение системы уравнений позволяет получить выражения для параметров и :

откуда: представляет собой средний уровень ряда динамики ( ); .

Расчет необходимых значений дан в табл. По итоговым данным определяем параметры уравнения:

;

.

В результате получаем следующее уравнение основной тенденции производства молока в регионе за 2009 – 2013 гг.

.

Подставляя в уравнение принятое обозначение t, вычислим выровненные уровни ряда динамики:

2009 г. -

2010 г. - и т.д.

По окончании расчета основной тенденции целесообразно построить график, на котором следует изобразить исходные данные и теоретические значения уровней ряда.

Основная тенденция (тренд) показывает, как воздействуют систематические факторы на уровень ряда динамики, а колеблемость уровней около тренда служит мерой воздействия остаточных факторов. Ее можно измерить по формуле

 

-среднее квадратическое отклонение.

Используя данные этого примера, рассчитаем показатель колеблемости производства молока в регионе (таблица 3):

млн. т.

Относительной мерой колеблемости является коэффициент вариации, который вычисляется по формуле

.

В нашем примере , или 1,85%.

ЗАДАНИЕ

 

Динамика роста народонаселения Земли характеризуется следующими данными:

год Население   Земли, млрд.чел t t2 ln Yi t ln Yi Yi теор. эксп (Yi-Yi теор.эксп)2
2.527              
3.06              
3.727              
4.43              
5.241              
6.16              
7.01              

 

По своим данным варианта(для определения данных варианта прибавьте к базовым значениям второго столбца (к значениям, расположенным после запятой) свой порядковый номер в списке группы)на основании имеющихся фактических данных динамического ряда

1.постройте экспоненциальное (нелинейное) регрессионное уравнение, описывающее изучаемый процесс изменения во времени,;

2.определите теоретические значения, выравненные по экспоненте и три прогнозные оценки на 2014-2016 годы;

3.Оцените колеблемость изучаемого показателя относительно линии тренда;

4.Определите среднюю ошибку аппроксимации ε;

5.Изобразите динамику временных рядов на графике по фактическим (эмпирическим) и теоретическим (выравненным по теоретической модели в виде регрессионного экспоненциального уравнения) данным, сделайте выводы.

Можно сделать общий вывод о том, что логарифмический тренд отражает, так же как и гиперболический тренд, постепенно затухающий процесс изменений. Различие состоит в том, затухание по гиперболе происходит быстро при приближении к конечному пределу, а при логарифмическом тренде затухающий процесс продолжается без ограничения гораздо медленнее.

Система уравнений для определения коэффициентов уравнения регрессии имеет вид:

для функции вида

 

Таблица : Численность рабочих фирм по месяцам

  Месяцы Численность рабочих,чел.
Январь
Февраль
Март
Апрель
Май
Июнь
Июль
Август
Сентябрь
Октябрь
Ноябрь
Декабрь
Итого

 

В приведенном примере средний уровень ряда составляет:

человек.

Индекс сезонности составляет для января ;
Для февраля и т.д.

ГАРМОНИЧЕСКИЙ АНАЛИЗ

 

Во многих случаях моделирование рядов динамики с помощью полиномов или экспонециальной функции не дает удовлетворительных результатов, так как в рядах динамики содержатся заметные периодические колебания вокруг общей тенденции, В таких случаях используют гармонический анализ.

Целью данного анализа являются выявление и измерение периодических колебаний в рядах динамики. Функцию, заданную в каждой точке изучаемого интервала времени, представляют бесконечным рядом синусоидальных и косинусоидальных функций.

Гармонический анализ представляет собой операцию по выражению заданной периодической функции в виде ряда Фурье по гармоникам разных порядков. Каждый член ряда представляет собой слагаемое постоянной величины с функциями синусов и косинусов определенного периода.

Аппроксимация динамики экономических явлений рядом Фурье состоит в выборе таких гармонических колебаний, наложение которых друг на друга (сумма) отражало бы периодические колебания фактических уровней динамического ряда. С помощью рядов Фурье представляют динамику явлений в виде некоторой функции во времени, в которой слагаемые расположены по убыванию периодов:

Параметры уравнений рассчитываются методом наименьших квадратов:

 

На графиках представлены возможные варианты зависимостей результативного признака Y от факторного Х, где Х – фактор времени

Экстраполяция – метод определения количественных характеристик для совокупностей и явлений, не подвергшихся наблюдению, путем распространения на них результатов, полученных из наблюдения над аналогичными совокупностями за прошедшее время, на будущее.

Приложение

ТАБЛИЦА ВЫЧИСЛЕНИЯ ЗНАЧЕНИЙ ПО РЯДУ ФУРЬЕ

t Yi cos t cos 2t sin t sin 2t
Y1
π/6 Y2 0,866 0,5 0,5 0,866
π/3 Y3 0,5 -0,5 0,866 0,866
π/2 Y4 -1
2π/3 Y5 -0,5 -0,5 0,866 -0,866
5π/6 Y6 -0,866 0,5 0,5 -0,866
π Y7 -1
7π/6 Y8 -0,866 0,5 -0,5 0,866
4π/3 Y9 -0,5 -0,5 -0,866 0,866
3π/2 Y10 -1 -1
5π/3 Y11 0,5 -0,5 -0,866 -0,866
11π/6 Y12 0,866 0,5 -0,5 -0,866

ОСНОВНЫЕ ПОНЯТИЯ ПРОГНОЗИРОВАНИЯ

Статистическое прогнозирование, наряду с другими видами прогнозирования социально-экономических явлений и процессов, является инструментом социально-экономического управления и развития.

Прогнозирование — это вид познавательной деятельности человека, направленной на формирование прогнозов развития объектов, на основе анализа тенденций и закономерностей его развития.

Прогнозирование — это научное, основанное на системе установленных причинно-следственных связей и закономерностей, выявление состояния и вероятностных путей развития явлений и процессов.

Прогнозирование предопределяет оценку показателей и дает характеристику явлений и процессов в будущем. Прогнозирование распространяется на такие процессы управления, которые в момент выработки прогнозов можно определить в весьма малом диапазоне, либо совсем невозможно, либо возможно, но требует учета действия таких факторов, влияние которых не может быть полностью или однозначно определено.

В зависимости от степени конкретности и характера воздействия на ход исследуемых процессов и явлений можно выделить три основные понятия прогнозирования:

— гипотеза;

— предсказание;

— прогноз.

Данные понятия тесно взаимосвязаны в своих проявлениях друг с другом и с исследуемым объектом и представляют собой последовательные ступени познания поведения явления и объекта в будущем.

Гипотезаэто научно обоснованное предположение либо о непосредственно ненаблюдаемом факте, либо о закономерном порядке, объясняющем известную совокупность явлений.

На уровне гипотезы дается качественная характеристика объекта, выражающая общие закономерности его поведения.

Гипотезой является не всякая догадка, а лишь предположение, которое носит вероятный характер. Установив, что группа явлений, закономерная связь которых неизвестна, имеет ряд тождественных черт с другой группой явлений, закономерная связь которых уже установлена, делается вывод о вероятности частичного сходства искомой закономерной связи с уже определенной.

Развиваясь, гипотеза одновременно подвергается проверке, необходимость которой вытекает из самой сущности гипотезы как предположения.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.