Теория вероятности и математическая статистика
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Теория вероятности и математическая статистика





Теория вероятности и математическая статистика

Введение.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Теория вероятности изучает данные закономерности.

Например: определить однозначно результат выпадения “орла” или “решки” в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число “орлов” и “решек”.

Испытанием называется реализация определенного комплекса условий, который может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы, реализация которого в каждом испытании приводит к неоднозначности исхода испытания.

Например: испытание - подбрасывание монеты.

Результатом испытания является событие. Событие бывает:

Достоверное (всегда происходит в результате испытания);

Невозможное (никогда не происходит);

Случайное (может произойти или не произойти в результате испытания).

Например: При подбрасывании кубика невозможное событие - кубик станет на ребро, случайное событие - выпадение какой либо грани.

Конкретный результат испытания называется элементарным событием.

В результате испытания происходят только элементарные события.

Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.

Например: Испытание - подбрасывание шестигранного кубика. Элементарное событие - выпадение грани с “1” или “2”.

Совокупность элементарных событий это пространство элементарных событий.

Сложным событием называется произвольное подмножество пространства элементарных событий.



Сложное событие в результате испытания наступает тогда и только тогда, когда в результате испытаний произошло элементарное событие, принадлежащее сложному.

Таким образом, если в результате испытания может произойти только одно элементарное событие, то в результате испытания происходят все сложные события, в состав которых входят эти элементарные.

Например: испытание - подбрасывание кубика. Элементарное событие - выпадение грани с номером “1”. Сложное событие - выпадение нечетной грани.

Введем следующие обозначения:

А - событие;

w - элементы пространства W;

W - пространство элементарных событий;

U - пространство элементарных событий как достоверное событие;

V - невозможное событие.

Иногда для удобства элементарные события будем обозначать E­i, Qi.

 

Операции над событиями.

1. Событие C называется суммой A+B, если оно состоит из всех элементарных событий, входящих как в A, так и в B. При этом если элементарное событие входит и в A, и в B, то в C оно входит один раз. В результате испытания событие C происходит тогда, когда произошло событие, которое входит или в A или в B. Сумма произвольного количества событий состоит из всех элементарных событий, которые входят в одно из Ai, i=1, ..., m.

 

 
 

 

 


2. Событие C произведением A и B, если оно состоит из всех элементарных событий, входящих и в A, и в B. Произведением произвольного числа событий называется событие состоящее из элементарных событий, входящих во все Ai, i=1, ..., m.

 

 

 


3. Разностью событий A-B называется событие C, состоящее из всех элементарных событий, входящих в A, но не входящих в B.

 

 


4. Событие называется противоположным событию A, если оно удовлетворяет двум свойствам.

Формулы де Моргана: и

 
 

 

 


5. События A и B называются несовместными, если они никогда не могут произойти в результате одного испытания.

События A и B называются несовместными, если они не имеют общих элементарных событий.

C=A×B=V

Тут V - пустое множество.

Свойства частости.

1.

2. Частость достоверного события равна 1. Wn(U)=1.

3. Частость суммы попарно несовместных событий равна сумме частостей.

Рассмотрим систему Ai, i=1, ..., k; события попарно несовместны, т.е.

Событие

Пусть в результате некоторого испытания произошло событие A. По определению сумы это означает, что в этом испытании произошло некоторое событие Ai. Так как все события попарно несовместны, то это означает, что никакое другое событие Aj (i¹j) в этом испытании произойти не может. Следовательно:

nA=nA1+nA2+...+nAk

Теория вероятности используется при описании только таких испытаний, для которых выполняется следующее предположение: Для любого события A частость наступления этого события в любой бесконечной серии испытаний имеет один и тот же предел, который называется вероятностью наступления события A.

Следовательно, если рассматривается вероятность наступления произвольного события, то мы понимаем это число следующим образом: это частость наступления события в бесконечной (достаточно длинной) серии испытаний.

К сожалению, попытка определить вероятность как предел частости, при числе испытаний, стремящихся к бесконечности, закончилась неудачно. Хотя американский ученый Мизес создал теорию вероятности, базирующуюся на этом определении, но ее не признали из-за большого количества внутренних логических несоответствий.

Теория вероятности как наука была построена на аксиоматике Колмогорова.

Теорема о продолжении меры.

Построим минимальную s - алгебру, которой принадлежит поле событий F (например, борелевская s - алгебра - это минимальная s - алгебра, которая содержит поле всех полуинтервалов ненулевой длины).

Тогда доказывается, что счетно-аддитивная функция P(A) однозначно распространяется на все элементы минимальной s - алгебры и при этом ни одна из аксиом не нарушается.

Таким образом, продленное P(A) называется s - аддитивной мерой.

s - алгебра содержит ненаблюдаемые события наряду с наблюдаемыми.

Но в аксиоматической теории вероятности считается, что может произойти любое событие из s - алгебры.

Расширение поля наблюдаемых событий на s - алгебру связано с невозможностью получить основные результаты теории вероятности без понятия s - алгебры.

Условная вероятность.

P(A/B)

Условной вероятностью наступления события A, при условии события B, называется вероятность наступления события A в результате испытаний, если известно, что в это испытании произошло событие B.

Вывод формулы условной вероятности для случая равновероятных элементарных событий

 

 

 

 


Действительно, в данном испытании произошло одно из t событий, входящих в B. Все элементарные события равновероятны, следовательно, для данного испытания вероятность наступления произвольного элементарного события, входящего в B равна 1/t. Тогда по классическому определению вероятности, в данном испытании событие A произойдет с вероятностью r/t.

В общем случае доказать эту формулировку невозможно, в теории вероятности она вводится как правило. Существует лишь толкование этой формулы.

Независимые события.

Два события A и B называются независимыми, если P(A/B)=P(A); P(B)=P(B/A) - доказать.

В этом случае вероятность наступления двух событий A и B равна P(AB)=P(B)P(A/B)=P(A)P(B),

при этом покажем, что P(B/A)=P(B); P(AB)=P(B)P(A)=P(A)P(B/A)

События A1A2...Ak называются независимыми между собой, если вероятность их совместного наступления ; . Два независимых события совместны.

* Если бы события были несовместны, то P(A/B)=0 и P(B/A)=0, т.к. они независимы, то P(A/B)=P(A) и P(B/A)=P(B), т.е. утверждение “независимые события несовместны”, т.к. P(A)=0 и P(B)=0, то это утверждение неверно.

Формула полной вероятности.

Рассмотрим систему A из k попарно несовместных событий.

B1, B2, ..., Bk

Пусть дано событие A, удовлетворяющее равенству A=B1A+B2A+...+BkA.

Показать, что события B1A, B2A, BkA попарно несовместны. BiABjA=BiBjAA=VAA=V

Найти вероятность наступления события A. Любое событие входящее в A, обязательно входит в некоторое, но одно Bi, т.к. B1, B2, ..., Bk образуют полную группу.

Т.к. B1, B2, ..., Bk несовместны, то по третей аксиоме теории вероятности имеем:

; т.е.

 

 

Например: Имеются урны трех составов

5 урн 6 белых и 3 черных шара
3 урны 10 белых и 1 черный
7 урн 0 белых и 10 черных

Все шары в каждой урне перемешаны.

Испытание - извлекается шар. Какая вероятность того, что при этом будет извлечен белый шар.

B1 - Вытащить любой шар из урны 1.

B2 - Вытащить любой шар из урны 2.

B3 - Вытащить любой шар из урны 3.

A - Извлечь белый шар.

A=B1A+B2A+B3A

B1, B2, B3 - попарно несовместны.

Формула полной вероятности: P(A)=P(B1)P(A/B1)+P(B2)P(A/B2)+P(B3)P(A/B3)

P(B1)=1/3 P(A/B1)=6/9=2/3
P(B2)=1/5 P(A/B2)=10/11
P(B3)=7/15 P(A/B3)=0

P(A)=1/3×2/3+1/5×11/10+7/15×0=2/9+2/11=40/99»0.4

Формула Байеса.

Постановка задачи та же, но решаем обратную задачу.

Проводится испытание, в результате которого произошло событие A. Какова вероятность того, что в этом испытании произошло событие Bi.

Условные вероятности называются апостериорными, а безусловные - априорными вероятностями.

P(ABi)=P(A)P(Bi/A)=P(Bi)P(A/Bi)

Откуда,

Таким образом, формула Байеса:

Композиция испытаний.

Имеется вероятностное пространство, которое порождает испытание 1.

где Ei, i=1, ..., m1 - пространство элементарных событий в результате испытания.

P(Ei), i=1, ..., m1 - вероятности элементарных событий.

Испытание 2 порождает вероятностное пространство вида

P(Ei), P(Qj) - разные вероятностные меры.

Композицией двух испытаний называется сложное испытание, состоящее в поведении первого и второго испытания.

Композиция испытаний порождает вероятностное пространство вида:

EiQj - композиционное событие.

В общем случае по P(Ei) и P(Qj) найти P(EiQj) невозможно.

Рассмотрим один частный случай, когда это можно сделать.

Два испытания называются независимыми, если различные исходы обоих испытаний определяются несвязанными между собой случайными факторами.

Из определения независимости испытания вытекает, что условные частости наступления события в одном испытании, при условии, что во втором испытании произошло фиксированное число событий равны безусловным частостям, если они существуют.

Пусть испытания независимы. В результате проведения первого испытания произошло элементарное событие Ei, в результате второго испытания может произойти все что угодно.

Тогда сложное событие, определяющее исход первого и второго испытания имеет вид:

и равно сумме комбинаций исходов первого и второго испытаний.

Вероятность сложного события A.

, т.е. результаты второго испытания не зависят от результатов первого.

Если в результате второго испытания произошло событие Qj, а в результате первого испытания могло произойти все что угодно, то сложное событие B имеет вид: .

Вероятность сложного события B равна сумме вероятностей комбинаций вида EiQj, i=1, ..., m1

, т.к. исходы первого испытания не влияют на исходы второго испытания. Из факта: P(AB)=P(A)P(B/A); P(B/A)=P(B); AB=EiQj (надо доказать)

A={EiQ1, EiQ2, ..., EiQj, ..., EiQm2}

B={E1Qj, E2Qj, ..., EiQj, ..., Em1Qj}

По определению произведения AB в него входят только те события, которые входят и в A, и в B. Из приведенных выше формул следует, что только событие EiQj входит и в A, и в B, то AB= EiQj. Следует:

Композиционное пространство имеет вид:

Общая структура независимых событий в композиционном пространстве, порожденном композицией испытаний:

т.е. в результате первого испытания произошли элементарные события: .

В результате второго испытания события: .

Сложное событие B определяет все возможные комбинации исходов двух испытаний независимо друг от друга. В результате первого испытания произошли элементарные события: .

В результате второго испытания события: .

Тогда:

, т.к. второе испытание не влияет на результаты первого.

т.к. , (надо доказать)

то

При решении практических задач, связанных с независимыми испытаниями обычно не требуется строить композиционных пространств элементарных событий, а использовать формально неверную запись: P(A×B)=P(A)×P(B).

Композиция n испытаний.

Имеется n испытаний. Зададим для i-го испытания вероятностное пространство:

i=1, ..., n

Композицией n испытаний называется сложное испытание, состоящее в совместном проведении n испытаний. Задается n испытаний, вероятностное пространство каждого из которых имеет вид:

i=1, ..., n

Композиционное пространство имеет вид:

j1=1, ..., m1; j2=1, ..., m2; jn=1, ..., mn;

 

Композиция n независимых испытаний.

Испытания (n - испытаний) называются независимыми, если неоднозначность исхода каждого из испытаний определена не связанными между собой группами факторов.

Событие A1: в результате проведения композиционного испытания в первом испытании произошло событие . Тогда

Событие An: в результате проведения композиционного испытания в первом испытании произошло событие . Тогда

i=1, ..., n

Рассмотрим событие:

В силу определения независимости испытаний очевидно, что:

.

Следовательно: .

На практике не строят композиционных пространств, а записывают формально неправильную формулу: P(A1A2...An)=P(A1)P(A2)...P(An).

Композиционное пространство имеет вид:

j1=1, ..., m1; j2=1, ..., m2; jn=1, ..., mn;

Общая структура независимых событий в композиционном пространстве имеет вид:

1-е событие - это событие, которое происходит в 1-м вероятностном пространстве
2-е событие - это событие, которое происходит во 2-м вероятностном пространстве
n - событие - это событие, которое происходит в n-м вероятностном пространстве

Рассмотрим два вероятностных пространства.

I II

Очевидно, что неопределенность испытания до испытания в первом вероятностном пространстве выше, чем во втором. Действительно, до испытания в I нельзя ни одному из событий отдать предпочтения, а во II событие E3 происходит чаще.

Энтропия - мера неопределенности исхода испытания (до испытания).

 

Первым, кто функционально задал выражение для энтропии был Шеннон.

 

,

 

Для вероятностного пространства:

Энтропия задается выражением: . Если P1=0, то Pi×logPi­=0.

Самим показать, что:

Если вероятностное пространство не имеет определенности, т.е. какое-то из Pi=1, а остальные равны 0, то энтропия равна нулю.

Если элементарный исход равновероятен, т.е. , то энтропия принимает максимальное значение.

0£Pi£1,

1)

,

т.о. вероятности p1, p2, ..., ps обращаются в ноль, например pi, которая равна 1. Но log1=0. Остальные числа также обращаются в 0, т.к. .

2) Докажем, что энтропия системы с конечным числом состояний достигае максимума, когда все состояния равновероятны. Для этого рассмотрим энтропию системы как функцию вероятностей p1, p2, ..., ps и найдем условный экстремум этой функции, при условии, что .

Пользуясь методом неопределенных множителей Лагранжа, будем искать экстремум функции: .

Дифференцируя по p1, p2, ..., ps и приравнивая производные нулю получим систему:

i=1, ..., s

Откуда видно, что экстремум достигается при равных между собой p1.

Т.к. , то p1= p2=, ..., = ps= 1/s.

Еденицей измерения энтропии является энтропия вероятностного пространства вида:

, которая называется 1 бит.

Неопределенность исхода испытания до испытания автоматически определяет информативность исхода испытания после испытания. Поэтому в битах также измеряется информативность исхода.

Рассмотрим два вероятностных пространства:

Проводим композицию двух испытаний. Композиционное пространство имеет вид:

i=1, ..., s1 j=1, ..., s2

С точки зрения качественного анализа максимальная энтропия композиционного вероятностного пространства достигается тогда, когда испытания независимы. Найдем энтропию композиционного пространства для случая независимых испытаний.

Биномиальное распределение.

n испытаний называются системой испытаний Бернулли, если испытания независимы, в каждом из них происходит событие , либо с вероятностью наступления P(A) = p;

Найдем вероятность того, что в результате проведенных n испытаний событие А произошло m раз:

Рассмотрим композицию n независимых испытаний и построим композиционное пространство элементарных событий.

Общий вид элемента этого пространства следующий:

где

При этом вероятность наступления такого события равна:

(умножение при независимых событиях)

 

Найдем вероятность наступления любого элементарного события из композиционного пространства:

Рассмотрим в композиционном вероятностном пространстве событие: в n испытаниях событие A произошло m раз.

Событие A состоит из - общее кол-во элементарных событий, в которое входит событие А. А произошло m раз, - n-m раз. Вероятность каждого из этих элементарных событий одинакова и равна:

Следовательно, на основании III аксиомы теории вероятности результат равняется:

 

(сложение вероятностей)

Случайная величина

 

Пусть имеется вероятностное пространство вида .

Случайной величиной называется измеримая числовая скалярная функция , элементами которой являются элементарные события.

Числовая скалярная функция - это функция, удовлетворяющая следующему условию:

событие - алгебре и, следовательно, имеет вероятность наступления.

Если произведено испытание, в результате которого произошло некоторое элементарное событие . В соответствии с функцией этому элементарному событию соответствует число, которое называется реализацией случайной величины x в данном испытании.

В соответствии с определением случайной величины вводится числовая скалярная функция F(x), , определенная для каждого действительного x и по определению равная вероятности наступления события:

 

 

Эта функция называется функцией распределения случайной величины .

Рассмотрим три события:

где a<b, a, b - действительные числа.

Свойства:

Покажем, что из факта

A2 Ì s-алгебре

A1 Ì s-алгебре

и равенства следует, что A3 Ì s.

По определению s-алгебры A3 измерима, поэтому можно принять III аксиому теории вероятности:

F(x) - неубывающая функция

Если x<y, то

т.к. , то преобразования верны.

Для всех технических приложений функцию распределения можно считать направленной слева.

В силу того, что функция распределения не убывает, она однозначно задает стчетно-аддитивную меру на поле, порожденном всеми полуинтервалами ненулевой длины.

По введенному полю построим борелевскую алгебру. Обозначим ее b. Возьмем произвольное число BÌb не принадлежащее полю. Это точка или сегмент. Т.к. множество получено с помощью счетной суммы или счетного пересечения множеств принадлежащих s-алгебре, то и это множество принадлежит s-алгебре и, следовательно, существует вероятность наступления события B. Следовательно, имеет место следующее эквивалентное определение измеримой функции.

Функция называется измеримой, если для любого BОb множество

алгебре

где

множество, полученное следующим образом:

Функция g(x) называется борелевской функцией, если для любого BÌb множество

Борелевская функция - функция, определяемая на системе борелевских множеств.

В функциональном анализе показано, что все известные аналитические функции являются борелевскими.

ТЕОРЕМА:

Пусть g(x) борелевская функция, - случайная величина, т.е. измеримая функция. Тогда функция

является измеримой и, следовательно, случайной величиной.

Берем произвольное BÌb. по определению борелевской функции.

Рассмотрим множество

т.к. измеримая функция и , то AÌs-алгебре

Следовательно, функция - измеримая функция, т.е. случайная величина.

Теорема Колмогорова

 

Любая числовая скалярная функция, которая удовлетворяет свойствам, которым удовлетворяет функция распределения, является функцией распределения и однозначно задает вероятностное пространство вида:

b - борелевская алгебра;

P - мера на борелевской алгебре;

R1 - числовая скалярная ось.

Введем функцию F(x)

Эта функция определена для всех x, неубывающая, непрерывная сверху. Показать самим, что такая функция однозначно задает счетно-аддитивную меру на поле, порожденном всеми полуинтервалами ненулевой длины.

Докажем, что 0<F(x)<1

Согласно терминологии, если функция y=f(x) непрерывна на отрезке [a, b], то она ограничена. Поскольку наша функция не убывающая, то максимум и минимум она соответственно будет иметь такой:

т.е. 0<F(x)<1.

 

2. Пусть имеем следующие функции.

Построим борелеву алгебру на поле, тогда по теореме о продолжении счетно-аддитивная функция, определенная на поле, без изменения аксиом теории вероятности, однозначно распространяется на все элементы борелевой алгебры, не принадлежащие полю. Т.о. вероятностное пространство построено, теорема доказана.

Смысл теоремы.

Теорема Колмогорова позволяет утверждать, что если вы исследуете случайную величину, то не надо строить абстрактное пространство элементарных событий, s-алгебру, счетно-аддитивную меру, конкретный вид функции . Нашей задачей будет лишь то, что считая R1 - числовой скалярной осью - пространство элементарных событий, мы должны найти функцию распределения F(x), использую статистику: результата конкретного испытания над случайной величиной:

X1, X2, ..., Xn

Дискретные случайные величины

 

Случайная величина называется дискретной, если в результате испытания она может принять значение из конечного либо счетного множества возможных числовых значений.

Случайные величины в дальнейшем будем обозначать большими буквами:

X, Y, Z

Вероятностное пространство дискретной случайной величины задается в виде:

, n - конечное или бесконечное.

Пример:

Испытание - композиция n-независимых испытаний, в каждом из которых происходит событие A с вероятностью p, либо с вероятностью 1-p.

Вероятностное пространство

В этом примере s-алгеброй является множество всех подмножеств пространства элементарных событий. Введенную нами случайную величину x по определению можно задать:

- верхняя строчка - это совокупность возможных числовых значений, которые может принимать случайная величина;

- нижняя строчка - вероятность наступления этих числовых значений.

Практически во всех задачах естествознания отсутствует промежуточный этап: испытание, W - пространство всех возможных исходов испытания, - числовая скалярная функция, элементы которой wÌW.

На самом деле структура:

- испытание;

- исход испытания;

- число на числовой оси.

Вероятностные характеристики дискретных случайных величин.

 

Математическим ожиданием случайной величины X называется число вида

xi - все возможные различные конкретные исходы испытания;

pi - вероятности их наступления.

Математическое ожидание является как бы аналогом центра масс точечной механической системы:

Как центр масс:

Смысл характеристики мат.ожидания заключается в следующем: это точка на числовой оси, относительно которой группируются результаты конкретных испытаний над дискретной случайной величиной.

Свойства математического ожидания

 

1. MC=C

 

2. MCX=CMX

Построим таблицу для случайной величины CX:

по определению математического ожидания:

 

3. M(X+a)=MX+a, a=const

Построим таблицу для случайной величины x+a

Доказать следствие

 

4. M(aX+b)=aMX+b, где a, b - константы

Пусть случайная величина Y является функцией f(x) от случайной величины X. Построим вероятностное пространство случайной величины Y.

Верхняя строчка является пространством элементарных событий для случайной величины Y. В противном случае верхняя строчка является пространством элементарных событий для величины Y.

Все одинаковые числа в верхней строчке заменяется одним, вероятность наступления которого равна сумме соответствующих вероятностей.

Следствие.

Математическое ожидание случайной величины Y равняется:

Начальным моментом К-го порядка случайной величины X называется математическое ожидание случайной величины Xk.

Центрированная случайная величина - это величина, равная X’=X-MX

Покажем, что математическое ожидание MX’ равно 0.

 

Центральным моментом К-го порядка называется начальный момент К-го порядка случайной величины X’

при решении реальных задач практические вероятности рi неизвестны, но считая, что вероятность - это частость, при большом числе испытаний

Дисперсией случайной величины X, называется центральный момент второго порядка случайной величины X.

Дисперсия является мерой концентрации результатов конкретных испытаний над случайной величиной X.

Свойства.

1. Чем меньше дисперсия, тем более тесно группируются результаты конкретных испытаний относительно математического ожидания.

Пусть дисперсия мала, тогда мало каждое слагаемое суммы (xi-n)2pi. Тогда для , xi которое по модулю резко отличается от математического ожидания n, pi - мало. Следовательно, большую вероятность наступления могут иметь лишь те xi, которые по модулю мало отличаются от математического ожидания.

 

2. Если дисперсия равна 0, то X - const.

 

3.

D(X+C)=DX

Y=X+C

Y’=Y-MY=X+C-M(X+C)=X+C-MX-C=X-MX=X’

DY=M(Y’)2=M(X’)2=DX

 

4.

DCX=C2DX

Y=CX

DY= M(Y’)2=M(Y’)2

Y’=Y-MY=CX-MCX=CX-MCX=C(X-MX)=CX’

DY= M(Y’)2=M(CX’)2=C2M(X’)2=C2DX

 

5.

Построим функцию распределения для дискретной случайной величины. Для удобства договоримся, что случайные величины располагаются в порядке возрастания.

т.е. по определению для любого действительного X, F(x) численно равно вероятности наступления следующего события: в результате испытаний над X оно приняло значение строго меньше x.

 

Производная функция

 

Характеристической функцией случайной величины X называется функция действительного аргумента вида

Производящей функцией называется скалярная функция вида:

 

 

Свойства производящей функции

 

1.

 

2.

 

3. Разложение производящей функции в ряд Маклорена имеет вид

 

Формула Тейлора имеет вид

при to=0 она носит название формулы Маклорена

Пример:

Рассмотрим случайную величину, распределенную по биноминальному закону распределения:

Найдем производящую функцию:

Найти DX и MX

Первая модель распределения Пуассона

 

Проведена неограниченно большая серия испытаний, в результате каждого испытания случайным образом появляется точка на числовой оси. Случайное распределение точек на числовой оси удовлетворяет следующим трем свойствам.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.