Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Воспламенение жидкости и механизм распространения пламени по поверхности жидкости





Горят пары жидкости, а не сама жидкость. Количество паров зависит от скорости испарения.

Испарение – переход жидкости в пар со свободной поверхности при температуре ниже точки кипения.

Процесс испарения - эндотермический. Если не подводить тепло извне, то жидкость будет охлаждаться.

Насыщенный пар – пар, находящийся в динамическом равновесии с жидкостью. Количество испарившихся молекул равно количеству сконденсировавшихся молекул. Насыщенный пар образуется в закрытом объеме. Пар оказывает давление на стенки сосуда.

Давление насыщенного пара – давление пара, находящегося в равновесии с жидкостью при данной температуре. Оно зависит только от температуры жидкости. Это постоянная величина (константа).

Уравнение Антуана описывает зависимость давления насыщенного пара от температуры: lg p = A – B/(t+ CA)

где А, В, СА – постоянные Антуана (справочные данные);

t – температура, оС.

Уравнение Клаузиуса-Клапейрона показывает, что с ростом температуры давление насыщенных паров возрастает: lg(p2/p1) = [Qисп/2,303R]×(1/T1 – 1/T2)

где Qисп – теплота испарения жидкости– количество теплоты, необходимой для перевода единицы количесива жидкости в пар (кДж/моль).

С увеличением температуры жидкости давление насыщенных паров (или их концентрация) возрастает экспоненциально.

Закон Дальтона: Робщ = Рпара + Рвоздуха

Для нормальных условий: Робщ = 101325 Па.

Концентрация паров над поверхностью жидкости: jп = (Рп×100)/Робщ (% об.)

где рп – парциальное давление.

Давление пара можно найти, если известна его концентрация:

Рп = (jп×Робщ)/100

Для любой жидкости всегда существует такой интервал температур, при котором концентрация насыщенных паров над зеркалом будет находиться в области воспламенения, т.е. jн £ jп £ jв.

Концентрации jн и jв создаются при определенных температурах, которые называют температурными пределами воспламенения (ТПВ).

Температурные пределы воспламенения (распространения пламени) – такие температуры вещества, при которых его насыщенные пары образуют в конкретной окислительной среде концентрации, равные соответственно нижнему (НТПВ) и верхнему (ВТПВ) концентрационным пределам воспламенения.

Причем следует отметить, что для создания НКПВ паров над поверхностью жидкости достаточно нагреть до температуры, равной НТПВ, не всю массу жидкости, а лишь только ее поверхностный слой.

Нижний температурный предел (НТПВ) – та температура, при которой над поверхностью жидкости образуются пары в количестве, соответствующем НКПВ.

ТПВ – показатель пожарной опасности жидкости. Для обеспечения пожарной безопасности желательно, чтобы жидкости хранились при температуре ниже НТПВ, или в крайнем случае выше ВТПВ, но в закрытом сосуде.

ТПВ определяются:

1) по КПВ жидкости, исходя из уравнения Антуана:

tн(в) = B/[(A – lg (jн(в) ×Pо)/100)] - CA;

2) по температуре кипения жидкости:

tн(в) = k tкип – l

где k и 1 – константы; для алифатических углеводородов, они, например, равны: k = 0,69, 1 = 74 (при расчете в градусах Цельсия);

3) по номограмме зависимости давления насыщенных паров от температуры;

4) по таблицам рнасыщ – температура с помощью метода линейной интерполяции.

Ненасыщенные пары тоже создают давление.

Температура, при которой ненасыщенные пары создают концентрации, соответствующие НКПВ, называется температурой вспышки. НКПВ создается насыщенными парами, температура вспышки всегда несколько выше, чем НТПВ.

Температура вспышки – самая низкая температура горючего вещества, при которой в условиях специальных испытаний над его поверхностью образуются пары и газы, способные вспыхивать от источника зажигания, но скорость их образования еще недостаточна для устойчивого горения (ГОСТ).

Хотя при температуре вспышки имеет место кратковременное воспламенение паров в воздухе, которое не способно перейти в устойчивое горение жидкости, тем не менее при определенных условиях вспышка жидкости способна явиться источником возникновения пожара.

Твсп – важный показатель пожарной опасности жидкости. По ней все жидкости разделяются на классы:

1 класс – температура вспышки до 28оС в закрытом тигле (ацетальдегид, бензол, гексан, диэтиловый эфир, изопропиловый спирт).

2 класс – температура вспышки от 29 до 61оС (бутиловый спирт, кумол, стирол).

Жидкости 1 и 2 классов относятся к ЛВЖ (легковоспламеняющиеся жидкости).

3 класс – температура вспышки от 62 до 120оС (анилин, этиленгликоль).

4 класс – температура вспышки выше 120оС (глицерин, трансформаторное масло).

Жидкости 3 и 4 классов относятся к ГЖ.

Температура воспламенения – наименьшая температура вещества, при которой в условиях специальных испытаний вещество выделяет горючие пары и газы с такой скоростью, что после их зажигания возникает устойчивое пламенное горение.

Температура вспышки и температура воспламенения теоретически может быть определена по уравнению Блинова: Твсп (воспл) = Впр/(nDoP(Tвсп))

где P(Tвсп) – парциальное давление насыщенных паров жидкости при температуре вспышки (воспламенения);

Впр – константа метода определения (В = 28 для закрытого сосуда, В = 45 для открытого сосуда, В = 53 при определении температуры воспламенения);

n- количество молекул кислорода, необходимого для окисления одной молекулы вещества;

Do – коэффициент диффузии (м2/с).

Сразу определяют Твсп (воспл)× P(Tвсп) = Впр/nDo. Затем берут любую температуру, находят соответственно P и РТ, сопоставляют с Впр/nDo. Методом приближений находят требуемую температуру.

У ЛВЖ температура воспламенения выше, чем температура вспышки на 1-5оС. При этом чем ниже температура вспышки, тем меньше разность между этими двумя температурами.

У ГЖ, имеющих высокую температуру вспышки, различие между этими температурами доходит до 25-3оС.

Пусть имеем емкость с жидкостью. Вносим источник зажигания.

Поверхность жидкости нагревается и идет испарение. Когда концентрация паров станет равна нижнему концентрационному пределу распространения пламени, произойдет воспламенение жидкости. Даже если убрать источник зажигания, пламя будет нагревать близлежащую поверхность, т.е. пламя перемещается по поверхности жидкости.

Жидкости нагреваются до температуры кипения. Концентрация паров над жидкостью выше нижнего концентрационного предела.

Пламя обычно не соприкасается с поверхностью (отрыв пламени), т.к. вблизи поверхности концентрация выше ВКПВ и только на некотором расстоянии концентрация соответствует КПВ.

Скорость распространения пламени – путь, пройденный фронтом пламени по поверхности жидкости в единицу времени.

Скорость распространения пламени для жидкости при нормальных условиях – величина постоянная (справочная) и является показателем пожарной опасности жидкости.

Скорость почти прямо пропорционально зависит от начальной температуры жидкости. Она определяется скоростью прогрева поверхности жидкости под действием лучистого теплового потока от пламени.

Чем выше температура вспышки жидкости и теплота ее испарения, тем более длительное время необходимо, чтобы прогреть ее до образования горючей паровоздушной смеси, тем, следовательно, ниже скорость распространения пламени.

Скорость зависит от направления воздушных потоков. Против ветра - скорость меньше, по направлению – скорость больше.

При изменении начальной температуры жидкости в открытой емкости в широком диапазоне вплоть до температуры кипения скорость распространения пламени будет изменяться от нескольких мм/с до 3-4 м/с. С максимальной скоростью пламя всегда будет распространяться по смеси, близкой к стехиометрической.

Механизм выгорания жидкости

После распространения пламени на всю площадь поверхности жидкости начинается процесс ее выгорания. Скорость поступления паров зависит от тепло- и массообмена. Чем больше поступает тепла, тем больше паров и температура пламени. Всего на нагрев жидкости идет около 7% от всей лучистой энергии.

Удельная массовая скорость выгорания - количество жидкости, выгоревшее с единицы площади жидкости в единицу времени (кг/(м2×с)).

От удельной массовой скорости зависит количество выделяющегося тепла, а значит и температура горения и т.д.

Линейная скорость выгорания – расстояние, на которое опускается уровень жидкости в единицу времени при горении (м/с).

Массовая и линейная скорости выгорания взаимосвязаны друг с другом через плотность жидкости: m = uл×r

При горении жидкости будет повышаться температура жидкости до температуры кипения. Слой кипящей жидкости будет увеличиваться, пока не закипит вся жидкость (увеличивается толщина гомотермического слоя). У борта жидкость нагревается быстрей, т.к. тепла на борт попадает больше. Более нагретая у стенок жидкость поднимается вверх, что способствует интенсивному перемешиванию и быстрому прогреву жидкости на большую глубину. Образуется т.н. гомотермический слой, т.е. слой с практически постоянной температурой, толщина которого растет во времени. Образование гомотермического слоя возможно также и в результате фракционной перегонки приповерхностных слоев смесей жидкостей, имеющих различную температуру кипения. По мере выгорания таких жидкостей приповерхностный слой обогащается более плотными высококипящими фракциями, которые опускаются вниз, способствуя тем самым конвективному прогреву жидкости. Установлено, что чем выше температура кипения жидкости (дизельное топливо, трансформаторное масло), тем труднее образуется гомотермический слой. При их горении температура стенок резервуара редко превышает температуру кипения. Однако при горении влажных высококипящих нефтепродуктов вероятность образования гомотермического слоя также высока. Возможность образования достаточно толстого гомотермического слоя при горении влажных нефтепродуктов чревата явлениями вскипания и выброса жидкости.

Через 10 мин горения образуется устойчивое диффузионное пламя. Но по мере протекания горения скорость выгорания будет уменьшаться, т.к. в зону горения попадают и продукты горения, доступ воздуха затрудняется.

Существует такая высота борта, когда горение прекращается самостоятельно. Для резервуара диаметром 5 м, например, горение прекращается на глубине 11 м.

Когда есть смесь жидкостей, то процесс выгорания более сложный. В процессе горения смеси жидкостей, имеющих разную температуру кипения (бензины, нефть и т.д.), происходит как бы их фракционная перегонка. Вначале происходит выход легкокипящих фракций, затем – все более высококипящих. Этот процесс сопровождается постоянным повышением температуры на поверхности жидкости.

Если температура кипения жидкости выше, чем температура кипения воды, то вода вскипает и выделяется пар, увеличивается объем (в 1700 раз объем водяного пара больше объема жидкости) и происходит выброс жидкости из резервуара. Перед выбросом наблюдается вибрация стенок резервуара, начинается подъем жидкости, слышен гул.

Выгорание жидкости зависит от:

1. природы жидкости.

2. начальной температуры жидкости: с увеличением начальной температуры жидкости скорость выгорания увеличивается (в течение первых 10 мин – до образования гомотермического слоя), поскольку снижаются затраты тепла на прогрев жидкости до температуры кипения;

3. диаметра резервуара.

4. уровня жидкости в резервуаре: с увеличением уровня жидкости в резервуаре m увеличивается, т.к. облегчается доступ воздуха;

5. влажности жидкости: содержание влаги понижает скорость выгорания жидкости, во-первых, вследствие дополнительных затрат на ее испарение, а во-вторых, в результате флегматизирующего действия паров воды в зоне горения;

6. содержания кислорода в атмосфере: большинство жидкостей не способно к горению в атмосфере с содержанием кислорода менее 15%. С повышением концентрации кислорода выше этого предела скорость выгорания возрастает.

ГОРЕНИЕ ТВЕРДЫХ ВЕЩЕСТВ

Твердые вещества и материалы широко распространены. Среди них значительную часть занимают материалы синтетического происхождения. Твердые материалы находят широкое применение в различных областях промышленности, строительстве, сельскохозяйственном производстве и т.д. И хотя интенсивно ведутся работы по огнезащите синтетических и искусственных твердых материалов, основная их масса относится к горючим. И это является одной из причин увеличения количества пожаров и увеличения размеров ущерба от них. Большой проблемой для органов и подразделений по чрезвычайным ситуациям являются лесные и торфяные пожары.

Поэтому знание механизмов возникновения и горения твердых веществ и материалов является необходимым условием подготовки специалистов в области пожаротушения.







ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.