Излучение Вавилова-Черенкова
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Излучение Вавилова-Черенкова





П.А. Черенков, изучая люминесценцию прозрачных жидкостей под действием гамма-излучения, обнаружил в 1934 г. слабое голубоватое свечение жидкости. Анализ свойств этого излучения показал, что оно не имеет ничего общего с люминесценцией, т. к. оно наблюдалось во всех жидкостях независимо от их химического состава. Интенсивность излучения практически не зависела ни от содержания в ней примесей, ни от температуры жидкости. Вавилов предположил, что обнаруженное Черенковым излучение, связано с движением в веществе свободных электронов, возникающих под действием гамма - лучей на молекулы (атомы) жидкости. Попытка объяснить это излучение торможением электронов в жидкостях окончилась неудачей.

Электромагнитное излучение имеет широкий диапазон от радиоволн до g- лучей, включая видимую часть оптического спектра.

Большая часть электромагнитного излучения обусловлена движением электронов, совершающих переход из одного состояния в другое.

Как показали Франк и Тамм, это положение основывается на предположении, что никакая заряженная частица не может двигаться, имея скорость (v) больше скорости света (c) в вакууме. Заряженная частица, движущаяся прямолинейно и равномерно в вакууме не излучает электромагнитных волн. Движущийся заряд переносит с собой свое статическое электрическое поле, движение которого в пространстве вызывает магнитное поле, перемещающееся также с зарядом. Например, движение электронов в проводнике можно считать равномерным и это движение создает статические электрические и магнитные поля. В прозрачных диэлектриках фазовая скорость видимого света меньше скорости света в вакууме: vф = u = с/n < v < c, где n - абсолютный показатель преломления вещества, т. е. заряженная частица, может двигаться со сверхсветовой скоростью (v) в веществе.



В 1904 г. Зоммерфельд теоретически доказал, что электрон при движении со сверхсветовой скоростью в вакууме становится источником излучения. Тамм и Франк показали, что любая заряженная частица, движущаяся в веществе равномерно и прямолинейно со сверхсветовой скоростью, излучает электромагнитные волны (излучение Вавилова - Черенкова).

Следует заметить, что в процессе излучения Вавилова - Черенкова энергия и скорость электрона, уменьшается за счет торможения, но в отличие от тормозного излучения, являющегося следствием изменения скорости частицы, уменьшение скорости электрона при эффекте Вавилова - Черенкова само является следствием излучения. Если бы электрон двигался в жидкости равномерно с постоянной сверхсветовой скоростью, то излучение Вавилова - Черенкова все равно имело бы место, тогда как никакого тормозного излучения частицы не наблюдалось бы. Рассмотрим это явление подробнее. Пусть заряженная частица движется в веществе вдоль оси ОХ с постоянной скоростью до световой скоростью (v).

Заряженная частица при движении в жидкости вызывает кратковременную поляризацию вещества в тех точках, через которые она проходит при своем движении. Поэтому молекулы среды, лежащие на пути движения частицы, становятся кратковременно действующими когерентными источниками вторичных элементарных электромагнитных волн, интерферирующих при наложении. Если v<u = c/n, то вторичные волны гасят друг друга.

Пусть заряженная частица (рис.1.1) в моменты времени t и t + Dt находится соответственно в точках А и С, расстояние между которыми s = vDt.

 
 

 

Рис. 1.1

Разность хода d элементарных волн, которые излучаются из точек А и С в произвольном направлении , составляющем угол a с вектором скорости можно найти из равенства, т. е.

d =½FM½ = (u - vcosa)Dt = s[u / (v - cosa)].

Для каждого значения длины волны l излучения можно найти такое значение s = sal, при котором d = l/2, так что элементарные вторичные волны гасят друг друга, т. е. .

При s = sal излучение в направлении из любой точки В отрезка АС траектории заряженной частицы гасится при интерференции в том же направлении из сходной ей точки D соседнего участка СЕ (½СЕ½=½АС½= sal), отстоящей от точки В на расстояние ½ВD½= sal.

Следовательно, при равномерном прямолинейном движении заряженной частицы в веществе с досветовой скоростью частица не излучает. Если же частица движется в веществе со сверхсветовой скоростью v>u=c/n, то значение sal, удовлетворяющее условию минимуму интерференции вторичных волн

,

можно найти для всех a, кроме значения j = аrccos(u / v) = arccos [c / (nv)].

Для направления a = j разность хода d вторичных волн, излучаемых из любых двух точек А и С траектории заряженной частицы, равна нулю:

d =½FM½ = (u - vcosj)Dt = 0.

 
 

 

 

Рис. 1.2

Таким образом, в указанном направлении должно происходить взаимное усиление вторичных волн при их наложении (интерференция), т. е. должно наблюдаться результирующее излучение заряженной частицы – излучение Вавилова-Черенкова, характеризующееся его направленностью.Свет, возникающий на каждом участке траектории заряженной частицы, распространяется вдоль образующих конуса (рис. 1.2), вершина О которого расположена на этом участке, а ось совпадает с направлением траектории частицы.

Образующие конуса составляют с осью ОХ угол j = arccos[c/(nv)]. Свет поляризован так, что вектор напряженности электрического поля электромагнитной волны направлен по нормали к поверхности конуса, а вектор напряженности магнитного поля электромагнитной волны - по касательной к ней.

Интенсивность излучения J определяется по формуле

где q - заряд частицы; n – абсолютный показатель преломления среды; n - частота излучения; v – скорость частицы; с - скорость света в вакууме.

Спектр излучения является непрерывным.

В области видимой части спектра, из-за дисперсии света, абсолютный показатель преломления n вещества является функцией частоты.

Для больших частот показатель преломления вещества равен единице, и спектр излучения Вавилова-Черенкова обрывается.

В видимой части спектра дисперсия проявляется в виде живописной картины, когда различные цвета излучаются движущимся зарядом под разными углами.

Максимум интенсивности излучения приходится на коротковолновую часть видимого спектра, и все излучение окрашивается преимущественно в синий цвет.

Эффект Вавилова-Черенкова нашел широкое практическое применение в физике элементарных частиц.

На его основе созданы счетчики заряженных частиц Черенкова, с помощью которых можно не только регистрировать эти частицы, но и определять модуль и направление скорости движения частицы.

 

Переходное излучение

    Рис. 1.3


Движущийся заряд излучает, когда скорость его движения превышает скорость света в веществе, т. е. при условии v > c/n или с/(nv) < 1.

Следовательно, для возникновения излучения абсолютные значения скорости заряда и скорости света в веществе не играют, в отдельности, ни какой роли. Важно только отношение этих скоростей.

Отношение скоростей меняется как при изменении скорости движения заряда, так и при изменении скорости света в веществе.

Известно, что при торможении (ускорении) движущегося заряда возникает тормозное излучение.

Если же скорость движения заряда постоянна, а скорость распространения света в веществе изменять заставляя заряд переходить из одной среды в другую с разными абсолютными показателями преломления.

Например при движении заряда в атмосфере Земли, то это будет равносильно мгновенному изменению скорости заряда, и, следовательно, такое сложное движение заряда должно сопровождаться излучением типа тормозного.

Это излучение было предсказано теоре-тически физиками В.Л. Гинзбургом и И.М. Франком в 1946 г., а затем открыто экспериментально и получило название - переходного излучения.

Пусть заряд движется с до световой скоростью в среде из двух протяженных диэлектриков, разделенных плоской границей (рис. 1.3). В этом случае излучение Вавилова-Черенкова в обеих средах отсутствует. Когда заряд неподвижен, то его эквипотенциальные поверхности (поверхности равного потенциала) представляют собой концентрические сферы, центр которых совпадает с зарядом, т. е.

Абсолютный показатель преломления не ферромагнитных, прозрачных диэлектриков связан с диэлектрической проницаемостью среды простым выражением: . При движении заряда его эквипотенциальные поверхности оказываются деформированными (рис. 1.3), сжимаясь в направлении движения так, что отношение размеров поверхности вдоль и поперек скорости

Этот эффект есть прямое следствие сокращения размера движущегося тела в направление его скорости. При пересечении частицей границы раздела меняется показатель преломления, происходит перестройка поля заряда, что и вызывает переходное излучение. Расчеты и эксперимент показывают, что заряд начинает излучать при подходе к границе раздела, и продолжает излучать после ее пересечения. Это расстояние получило название зоны образования переходного излучения. Статическое поле заряда представляют в виде суммы волновых полей набора различных частот. Из-за ограничения этого поля в пространстве волны оказываются стоячими, которые в среднем не переносят электромагнитной энергии, но убывают по амплитуде. Поле частоты равномерно движущегося заряда с до световой скоростью v имеет продольный по скорости размер: s = v/n0, где n0 – собственная частота излучения движущегося заряда.

Следовательно, перестройка поля заряда, которое перемещается в пространстве вместе с зарядом, начнется в тот момент, когда граница пространства, где происходят электромагнитные колебания поля с частотой n0, достигнет границы раздела двух диэлектриков. В результате под углом j к скорости заряда мы увидим доплеровскую частоту излучения n, которую можно найти по формуле: n0 = n(1 – cosj).

Спектр переходного излучения сплошной от радиочастот до гамма- лучей.

Интенсивность переходного излучения пропорциональна квадрату заряда частицы. При скоростях заряда, много меньших скорости света в вакууме, в спектре переходного излучения, главным образом представлены радио- и оптические частоты.

При движении заряда со скоростью близкой к скорости света резко возрастает интенсивность излучения в диапазоне жесткого рентгеновского излучения и гамма-лучей – она пропорциональна энергии частицы. Все излучение становится сильно направленным по скорости частицы и сосредотачивается в узком конусе вдоль ее траектории.

Примером переходного излучения является свечение в катодных трубках (люминесценция и тормозное излучения также дают некоторый вклад в это свечение).

Для переходного излучения, так же как и для излучения Вавилова-Черенкова, масса частицы не играет роли, необходимо учитывать только заряд и скорость частицы.

Переходное излучение применяют для определения оптических свойств металлов, для регистрации сверхбыстрых заряженных частиц.

 

Дифракционное излучение

Возмущение поля движущегося заряда приводит к возникновению излучения. Существуют различные способы вызвать возмущение поля движущегося заряда. Один из них разобран в разделе переходного излучения.

Возмущение поля движущегося заряда можно вызвать, если на пути движущейся частицы поместить препятствие.

Пролетая около препятствия, заряженная частица перестраивает свое электрическое поле, в результате чего возникает излучение. Понять это явление проще, если представить поле частицы в виде системы волновых полей. При своем движении частица переносит с собой стоячие, убывающие по амплитуде, волны. При определенном расстоянии от препятствия волновое поле налетает на него, например, на проводящий экран. При падении электромагнитной волны на экран возникает дифракция поля. Поэтому каждое частичное поле заряда испытывает на экране эту дифракцию, порождая независимо распространяющуюся от частицы вторичную волну. Такое излучение получило название дифракционного излучения.

Если заряженная частица движется над дифракционной решеткой, то частота спектра излучения источника

где m = 1, 2, 3, …, - порядок дифракционного спектра; d – период решетки.

 
 

 

 

Рис. 1.4

Неподвижный наблюдатель через щели дифракционной решетки (рис. 1.4) увидит периодически появляющийся источник.Если наблюдатель не знает о существовании дифракционной решетки, то он скажет, что видит движущийся источник, который периодически вспыхивает с определенной частотой. Спектр излучения этого источника является доплеровским. Частота вспышек n0 = v/d. Наблюдатель видит не только основную частоту излучения, но и кратные ей частоты, что объясняется не синусоидальностью колебаний движущегося источника.

 
 
 

 

Рис. 1.5

Этот эффект впервые объяснил И.М. Франк в 1942 г. Э. Парселл и С. Смит в 1953 г. впервые выполнили эксперименты по дифракционному излучению на решетке. Сфокусированный пучок электронов двигался очень близко к плоскости дифракционной решетки, период которой d =1,67 мкм. При этом наблюдалось излучение в видимой части спектра под углом j = 200 –300. Основная частота в спектре соответствовала l ~10 -7 м. Кроме основной частоты, наблюдались обертоны до пятого порядка. Дифракционное излучение можно использовать для передачи информации, например, телевизионного сигнала, когда одновременно со звуком передается изображение, состоящее из множества элементов.

Был сконструирован генератор малой мощности «Варотрон», позволяющий получать излучение в диапазоне волн 10-6 – 0,5×10 -6 м, т. е. от инфракрасной области спектра до границ видимого спектра. Генератор дифракционного излучения «Оратрон» (рис.1.5) имел мощность 11,5 Вт для длины волны 5,45–3,4 мм.

С помощью сферического зеркала дифракционное излучение превращается в стоячую волну, энергия которой концентрируется внутри прибора. Отвод электромагнитной энергии волны осуществляется с помощью волновода, открытый конец которого проходит через отражающее зеркало.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.