Собственные функции и собственные значения. Свободная частица
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Собственные функции и собственные значения. Свободная частица





Функции Y,удовлетворяющие уравнению Шредингера при данных U, называются собственными функциями.

Значения Е, при которых существуют решения уравнения (22), называются собственными значениями.

В качестве примера определим y и Е для свободной частицы.

Свободной называют частицу, на которую не действуют силы, т.е. . Следовательно, U(x)=const и ее можно принять равной нулю. Таким образом, в случае свободного движения частицы, ее полная энергия совпадает с кинетической, а скорость . Направим ось Х вдоль вектора . Тогда (22) можно записать в виде

. (23)

Прямой подстановкой можно убедится, что частным решением этого уравнения является функция y(х)=Аexp(ikx), где А=сonst, k=const c собственным значением энергии

Е= . (24)

C учетом (21) волновая функция

Y(х)=Аexp(-iwt+ ikx)= Аexp[-(i/ )(Еt- рxх)]. (25)

здесь w=Е/ , k=рx/ .

Функция (25) представляет собой плоскую монохроматическую волну де Бройля [cм. (16)].

Из (24) следует, что зависимость энергии от импульса

Е= 2k2/(2m)=Рх2/(2m)=mv2/2 (26)

оказывается обычной для нерелятивиских частиц. Следовательно, энергия свободной частицы может принимать любые значения, т.е. ее энергетический спектр является непрерывным.

Плотность вероятности обнаружить частицу в данной точке пространства

çy÷ 2=yy*=A2,

т.е. все положения свободной частицы в пространстве являются равновероятными.

Частица в одномерной прямоугольной «потенциальной яме»

Такая «яма» описывается потенциальной энергией вида

 

При таком условии частица не проникает за

пределы "ямы", т.е. y(0)= y(l)=0. (27)

В пределах ямы (0<x<l) уравнение (22) сведется к уравнению

или , (28)

где k2= . Общее решение (28) y(х)=Аsinkx+Bcoskx.(29)

Так как согласно (27) ψ(0)=0, то В=0, тогда y(х)=Аsinkx . (30)



Условие (27) y(l)=Аsinkl=0 выполняется только при kl=pn, где n=1,2...целые числа, т.е. необходимо, чтобы k=pn/l. (31)

Из (29) и (31) следует, что (32)

Таким образом, энергия в «потенциальной яме» принимает лишь определенные, дискретные значения, т.е. квантуется. Квантованные значения энергии Еn называются уровнями энергии, а число n, определяющее энергетические уровни, называется главным квантовым числом.

Заметим, что n=1 cоответствует минимальная энергия Е1¹0.

Подставив в (30) значения k из (31), найдем собственные функции

.

Постоянную А найдем из условия нормировки (18), которое для данного случая имеет вид

.

В результате интегрирования получим , а собственные функции будут иметь вид

(33)

Графики этих функций, соответствующие уровням энергии при n=1, 2, 3, приведены на рис. 5 (а). На рис. 5 (б) изображены плотности вероятности обнаружения частицы на различных расстояниях от «стенок» ямы

Из рис. следует, что, например, в квантовом состоянии с n=2 частица не может находится в середине «ямы», в то время как одинаково часто может пребывать в ее левой и правой частях. Такое поведение частицы указывает на то, что представления о траектории частицы в квантовой механике несостоятельны.

Квантовый осциллятор

Классическим осциллятором в классической механике называли частицу массой m, колеблющуюся с частотой w0=Ök/m под действием упругой силы F=-kx.

Потенциальная энергия такой частицы U=kx2/2=m x2/2; в точках с координатами ±хmax она равна полной энергии Е. Т.о., энергия частицы могла принимать любые значения, т.е. изменяться непрерывно (рис.6).

В квантовой механике понятие силы не используется, поэтому квантовый осциллятор следует определить как частицу с потенциальной энергией U=kx2/2=m x2/2. (34)

Подставляя (34) в (22) и учитывая, что частица движется только вдоль одной прямой (вдоль оси х), получим

. (35)

Решая уравнение (35), можно получить, что энергия (энергетический уровень) частицы принимает только дискретные значения (квантуется).

(36)

n=0, 1, 2... – квантовые числа.

Наименьшее значение энергии E0= w0/2 определяется только собственной частотой w0 и ее невозможно отнять у частицы никаким охлаждением, она сохранилась бы и при Т=0К.

Из (36) следует, что уровни находятся на равных расстояниях друг от друга

(37)

т.е. уровни эквидистантны [см. рис. 7, где на границе с потенциальной кривой U(±хmax)=Еn]. При больших квантовых числах n DЕ/Еn=1/(n+1/2)®0, т.е. происходит относительное сближение энергетических уровней и получаются результаты, близкие к результатам классического рассмотрения, когда энергия частицы может изменяться непрерывно, и, следовательно, может иметь любые значения. В этом заключается принцип соответствия, сформулированный Бором в 1923 г.:

При больших квантовых числах выводы и результаты квантовой механики должны соответствовать выводам и результатам классической механики.

Более общая трактовка принципа соответствия заключается в следующем: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения. Причем в определенных, предельных случаях, новая теория переходит в старую.

 









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.