Энергосбережение в системе электроснабжения
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Энергосбережение в системе электроснабжения





 

Полная система электроснабжения включает в себя электрические станции, электрические системы и сети (линии электропередачи, трансформаторные подстанции) и потребителей электрической энергии.

Потери энергии начинаются с электрической станции, с преобразования внутренней энергии топлива в электрическую энергию в генераторе, КПД этого преобразования низок в основном из-за низкой эффективности теплового двигателя. В конденсационных электростанциях он составляет всего 30%, в ТЭЦ - достигает 80%.

Потери энергии в электропередаче (в линиях и трансформаторах) тоже значительны, поскольку от источника до потребителя электроэнергия подвергается 3-5 трансформациям и проходит сотни и тысячи километров. К.П.Д. электропередачи составляет ориентировочно 90%.

Не менее расточительны и сами потребители электрической энергии: КПД наиболее широко распространенных источников электрического освещения, ламп накаливания всего 5%, К.П.Д. люминесцентных и наиболее современных галогенных ламп - около 20%, КПД электродвигателей небольшой мощности (микродвигателей) – 30...50%, КПД мощных двигателей – 80...90% и выше. Кроме того, существуют электротехнологические установки, такие как сварка, высокочастотный нагрев, нагрев в печах сопротивления, в дуговых печах, сопровождающиеся значительными потерями энергии. Все это объекты для энергосбережения в системе электроснабжения.

Мероприятия по энергосбережению в системе электроснабжения организует и стимулирует энергосистема путем установления соответствующих тарифов (двухставочный тариф, дневной, ночной тариф и т.д.), путем принудительных включений - отключений, заданием своих требований к графикам нагрузки и т.д.



Нерациональные расходы электроэнергии возникают:

· при несоответствии используемого устаревшего оборудования характеру и объёму производства в изменившихся условиях,

· при использовании электронагревателей для нагрева помещений, воды и т.д. при наличии других источников тепла (пар или горячая вода от котельных или ТЭЦ, солнечная энергия, энергия ветра),

· при отсутствии или плохом качестве теплоизоляции электропечей, электроплит, кухонного оборудования.

· при отсутствии или недостаточной или избыточной мощности компенсирующих устройств,

· при плохом состоянии механического оборудования (дефекты конструкции, выработанные подшипники, ненадлежащая смазка),

· при плохом качестве ремонта электродвигателей,

· при завышенной мощности электродвигателей,

· при завышенной или заниженной мощности электронагревателей,

· при отсутствии автоматического управления и регулирования технологических процессов горения в котельных, подачи воды, воздуха, отсоса дымовых газов, частоты вращения в механизмах в зависимости от требуемой нагрузки, температуры и т.д.,

· при отсутствии контроля расхода электроэнергии в подразделениях и отсутствии систем материального стимулирования энергосбережения,

· при плохом качестве или отсутствии теплоизоляции сетей сжатого воздуха.

 

Снижение потерь энергии в системе электроснабжения достигается

· уменьшением потерь в трансформаторах - правильным выбором их мощности, числа, рационального режима работы, исключением холостых ходов при малых загрузках, выбором числа одновременно работающих трансформаторов, подбором компенсирующих устройств, применением автотрансформаторов,

· уменьшением потерь в линиях, шинопроводах, реакторах,

· регулированием графиков нагрузки,

· компенсацией реактивной мощности, правильным выбором мощности и расположения компенсирующих установок,

· применением для компенсации реактивной мощности батарей статических конденсаторов на напряжениях 0,38 и (или) 6-10 кВ, применение синхронных двигателей, работающих в режиме перевозбуждения или с , применение синхронных компенсаторов на крупных подстанциях,

 

Снижение потерь совершенствованием технологического процессадостигается:

  • рациональным выбором самого технологического процесса, имея ввиду, что расход энергии, например, при строгании в 1,5 раза больше, чем при токарной обработке одних и тех же деталей, а при сверлении в 1,3 раза больше, чем при строгании и т.д.,
  • совмещением операций, увеличением подач,
  • увеличением загрузки двигателей, заменой незагруженных двигателей двигателями меньшей мощности, переключением незагруженных двигателей с треугольника на звезду,
  • автоматизацией операций, например, подвод-отвод инструмента,
  • повышением качества ремонта асинхронных двигателей (нежелательность проточки роторов, своевременная замена подшипников, перемотка обмоток без нарушения технических условий и т.д.),
  • регулированием частоты вращения электродвигателей для снижения расхода насосов компрессоров, вентиляторов, вместо регулирования задвижкой, выбором числа параллельно работающих механизмов,
  • регулированием и своевременным отключением электрического отопления, освещения, кондиционирования при окончании работы, в зависимости от состояния окружающей среды,
  • регулированием напряжения в допускаемых ГОСТ пределах - 5-10% номинального.

 

Снижение потерь в осветительных установках достигается:

· применением современных экономичных источников света - галогенных, люминесцентных ламп с КПД = 20% взамен ламп накаливания с КПД = 5%,

· максимальным использованием естественного освещения путем проектирования производственных зданий, организацией рабочего времени, содержанием в чистоте прозрачных потолков, окон,

· автоматическим или ручным отключением ненужного освещения в светлое время или снижением освещенности, когда это возможно,

· уменьшением мощности ламп там, где это не мешает технологическому процессу заменой ламп или снижением напряжения с помощью трансформатора или в схеме с однополупериодным выпрямителем.

 


Л И Т Е Р А Т У Р А

 

1. Дж. Твайделл, А. Уэйр. Возобновляемые источники энергии.- М.: Энергоатомиздат, 1990 г.- 391 с.

2. Шефтер Я.И. Использование энергии ветра. - М.: Энергоатомиздат, 1983 г.

3. Олешкевич М.М., Лосюк Ю.А. Нетрадиционные источники энергии. Учебно-методическое пособие для студентов вузов. Минск. БГПА, 2001

4. Олешкевич М.М. Перспективы ветроэнергетики в Беларуси//Энергетика. Известия вузов и ЭО СНГ-1999.-№1

5. Лаврентьев Н.А., Жуков Д.Д. Развитие белорусской ветроэнергетики. Опыт Занарочи // Энергия и ТЭК. – 2004. – № 8. – С. 43 – 45.

6. Вымороков Б.М. Геотермальные электростанции. М.-Л.: Энергия, 1986 г.

7. Коробков В.А. Преобразование энергии океана.- Л., Судостроение, 1986 г.

8. Мак-Вейг Д. Применение солнечной энергии.- М.: Энергоатомиздат, 1981 г.

9. Сассон А. Биотехнология: свершения и надежды.- М., Мир, 1967 г.

10. Копытов Ю.В., Чуланов Б.А. Экономия электроэнергии в промышленности.- М.: Энергия, 1982 г.

11. Олешкевич М.М., Макоско Ю.В. Анализ характеристик роторных ветроэнергетических установок. //Энергетика. Известия вузов и ЭО СНГ-2000.-№6

12. Олешкевич М.М., Макоско Ю.В. Моделирование квазиустановившихся режимов работы асинхронного генератора системного ветроагрегата. //Энергетика. Известия вузов и ЭО СНГ- 2003.-№3, с.29-42

13. Олешкевич М.М., Макоско Ю.В., Олешкевич В.М., Фалюшин П.Л., Бохан Н.И. Комбинированные энергетические установки на возобновляемых источниках энергии. //Энергетика. Известия вузов и ЭО СНГ -2000.-№5, с. 23-30

14. Постановление СМ РБ от 24.4.1997г. №400 с изменениями 28.2.2002г. № 288 «О развитии малой и нетрадиционной энергетики».

15. Постановление СМ РБ от 22.5.1997г. №45 «О порядке формирования тарифов на электроэнергию, покупаемую у объектов малой и нетрадиционной энергетики»

16. Ахмедов Р.Б. Нетрадиционные и возобновляемые источники энергии. - М.:О-во «Знание», 1988.

17. Калашников Н.П. Альтернативные источники энергии. - М.: О-во «Зна-

ние», 1987.

18. Калинин Ю.Я., Дубинин А.Б. Нетрадиционные способы получения энергии. - Саратов: СПИ, 1983. - 70 с.

19. Лабунцов Д.А. Физические основы энергетики. - М.: Изд-во МЭИ, 2000.

20. Марочек В.И., Соловьев ______С









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.