Физиология щитовидной железы.
Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Физиология щитовидной железы.





Щитовидная железа состоит из двух долей, соединенных перешейком и расположенных на шее по обеим сторонам трахеи ниже щитовидного хряща. Она имеет дольчатое строение. Ткань железы состоит из фолликулов, заполненных коллоидом, в котором имеются йодсодержащие гормоны тироксин (тетрайодтиронин) и трийодтиронин в связанном состоянии с белком тиреоглобулином. Эти гормоны образуются из аминокислоты тирозина путем ее йодирования. В межфолликулярном пространстве расположены парафолликулярные клетки, которые вырабатывают гормон тиреокальцитонин.Йодсодержащие гормоны выполняют в организме следующие функции: усиление всех видов обмена (белкового, липидного, углеводного), повышение основного обмена и усиление энергообразования в организме;

влияние на процессы роста, физическое и умственное развитие;

увеличение частоты сердечных сокращений;

стимуляция деятельности пищеварительного тракта: повышение аппетита, усиление перистальтики кишечника, увеличение секреции пищеварительных соков; повышение температуры тела за счет усиления теплопродукции; повышение возбудимости симпатической нервной системы.Секреция гормонов щитовидной железы регулируется тиреотропным гормоном аденогипофиза, тиреолиберином гипоталамуса, содержанием йода в крови. При недостатке йода в крови, а также йодсодержащих гормонов по механизму положительно" обратной связи усиливается выработка тиреолиберина, который стимулирует синтез тиреотропного гормона, что, в свою очередь, приводит к увеличению продукции гормонов щитовидной железы. При избыточном количестве йода в крови и гормонов щитовидной железы работает механизм отрицательной обратной связи. Возбуждение симпатического отдела вегетативной нервной системы стимулирует гормонообразовательную функцию, возбуждение парасимпатического отдела - тормозит ее.Нарушения функции щитовидной железы проявляются ее гипофункцией и гиперфункцией. Если недостаточность функции развивается в детском возрасте, то это приводит к задержке роста, нарушению пропорций тела, полового и умственного развития (кретинизм). У взрослых гипофункция щитовидной железы приводит к развитию патологического состояния - микседемы.



Гипофункция щитовидной железы может развиться у людей проживающих в местностях, где в воде и почве отмечается недостаток йода (эндемический зоб). Щитовидная железа при этом заболевании увеличена (зоб), возрастает количество фолликулов.

При гиперфункции щитовидной железы развивается заболевание тиреотоксикоз (диффузный токсический зоб, Базедова болезнь, болезнь Грейвса.Кальцитонин, или тиреокальцитонин, вместе с паратгормоном околощитовидных желез участвует в регуляции кальциевого обмена. Под его влиянием снижается уровень кальция в крови (гипокальциемия). Это происходит в результате действия гормона на костную ткань, где он активирует функцию остеобластов и усиливает процессы минерализации. Функция остеокластов, разрушающих костную ткань, напротив, угнетается. В почках и кишечнике кальцитонин угнетает реабсорбцию кальция и усиливает обратное всасывание фосфатов. Продукция тиреокальцитонина регулируется уровнем кальция в плазме крови по типу обратной связи.

Паращитовидные железы.

Человек имеет 2 пары околощитовидных желез, расположенных на задней поверхности или погруженных внутри щитовидной железы. Главные, или оксифильные, клетки этих желез вырабатывают паратгормон, или паратирин, или паратиреоидный гормон (ПТГ). Паратгормон регулирует обмен кальция в организме и поддерживает его уровень в крови. В костной ткани паратгормон усиливает функцию остеокластов, что приводит к деминерализации кости и повышению содержания кальция в плазме крови (гиперкальциемия). В почках паратгормон усиливает реабсорбцию кальция. В кишечнике повышение реабсорбции кальция происходит благодаря стимулирующему действию паратгормона на синтез кальцитриола - активного метаболита витамина D3. Под влиянием паратгормона происходит его активация в печени и почках. Кальцитриол повышает образование кальцийсвязывающего белка в стенке кишечника, что способствует обратному всасыванию кальция. Влияя на обмен кальция, паратгормон одновременно воздействует и на обмен фосфора в организме: он угнетает обратное всасывание фосфатов и усиливает их выведение с мочой (фосфатурия).Активность околощитовидных желез определяется содержанием кальция в плазме крови. Если в крови концентрация кальция возрастает, то это приводит к снижению секреции паратгормона. Уменьшение уровня кальция в крови вызывает усиление выработки паратгормона. Удаление околощитовидных желез у животных или их гипофункция у человека приводит к усилению нервно-мышечной возбудимости, что проявляется фибриллярными подергиваниями одиночных мышц, переходящих в спастические сокращения групп мышц, преимущественно конечностей, лица и затылка. Животное погибает от тетанических судорог.Гиперфункция околощитовидных желез приводит к деминерализации костной ткани и развитию остеопороза. Гиперкальциемия усиливает склонность к камнеобразованию в почках, способствует развитию нарушений электрической активности сердца, возникновению язв в желудочно-кишечном тракте

42. Эндокринная функция поджелудочной железы и ее роль в регуляции обмена веществ.

Экзокринная (внешнесекреторная, или экскреторная) функция П. ж. заключается в секреции в двенадцатиперстную кишку сока, содержащего набор ферментов, гидролизующих все основные группы пищевых полимеров, основными из которых являются липаза, a-амилаза, трипсин и химотрипсин. Секреция неорганических и органических компонентов панкреатического сока происходит в разных структурных элементах П. ж.. Основные ферменты панкреатического сока секретируются в неактивной форме (трипсиноген, химотрипсиноген) и активизируются только в двенадцатиперстной кишке, превращаясь под действием энтерокиназы в трипсин и химотрипсин. Объем секрета ацинозных клеток невелик, и количество поджелудочного сока в основном определяется секрецией клеток протоков, в которых продуцируется жидкая часть секрета, изменяются его ионный состав и количество вследствие реабсорбции и ионного обмена.Различают три фазы секреции панкреатического сока: сложнорефлекторную, желудочную и кишечную. Сложнорефлекторная фаза происходит под действием условнорефлекторных (вид и запах пищи) и безусловнорефлекторных (жевание и глотание) раздражителей; секреция панкреатического сока начинается через 1—2 мин после приема пищи. Раздражение ядер передней и промежуточной гипоталамических областей стимулирует секрецию, а задней — тормозит ее. Секреция панкреатического сока в желудочной фазе связана с влиянием блуждающего нерва, а также действием гастрина, выделяемого желудком. Основная фаза секреции панкреатического сока — кишечная: она имеет гуморальную природу и зависит от высвобождения двух кишечных гормонов — секретина и холецистокинина (панкреозимина). Секретин — пептидный гормон, стимулирует секрецию большого количества панкреатического сока, он обеспечивает создание нейтральной среды. Холецистокинин — полипептидный гормон верхнего отдела тонкой кишки, стимулирует секрецию панкреатического сока, богатого пищеварительными ферментами и обедненного бикарбонатами.

На секреторную функцию П. ж. оказывают влияние гормоны щитовидной и паращитовидных желез, надпочечников.

Эндокринная(инкреторная) функция П. ж. заключается в продукции ряда полипептидных гормонов, поступающих в кровь; она осуществляется клетками панкреатических островков. Физиологическое значение инсулина заключается в регуляции углеводного обмена и поддержании необходимого уровня глюкозы в крови путем его снижения. Глюкагон обладает противоположным действием. Его основная физиологическая роль — регуляция уровня глюкозы в крови путем его увеличения; кроме того, он оказывает влияние на метаболические процессы в организме. Соматостатин ингибирует освобождение гастрина, инсулина и глюкагона, секрецию соляной кислоты желудком и поступление ионов кальция в клетки панкреатических островков. Панкреатический полипептид, более 90% которого продуцируется РР-клетками панкреатических островков и экзокринной частью П. ж., по своему эффекту является антагонистом холецистокинина.

43-44. Физиология надпочечников. Роль гормонов коры и мозгового вещества в регуляции функций организма.

Адреналин и норадреналин надпочечников действуют подобно симпатическим нервам, т.е. увеличивают частоту, силу сокращений, возбудимость и проводимость сердечной мышцы. Значительно повышают энергетический обмен. Их большое количество выделяется при голодании.

Гормоны опосредованного действия. АКТГ и кортикостероиды надпочечников постепенно увеличивают тонус сосудов и повышают кровяное давление. Глюкокортикоиды надпочечников стимулируют распад белков. Соматотропин наоборот усиливает синтез белка. Минералокортикоиды регулируют натрий-калиевый баланс.Натрийуретический гормон или атриопептид. Образуется в основном в левом предсердии при его растяжении, а также в передней доле гипофиза и хромаффинных клетках надпочечников. Он усиливает фильтрацию, снижает реабсорбцию натрия. В результате возрастают выведение натрия и хлора почками, повышает суточный диурез.Под влиянием ренина суживаются артериолы почек и уменьшается проницаемость стенки капилляров клубочка. В результате скорость фильтрации снижается. Одновременно ангиотензин II стимулирует выделение альдостерона надпочечниками. Альдостерон усиливает канальцевую реабсорбцию натрия и реабсорбцию воды. Происходит задержка воды и натрия в организме. Действие ангиотензина сопровождается усилением синтеза антидиуретического гормона гипофиза. Увеличение воды и хлорида натрия в сосудистом русле, при прежнем содержании белков плазмы, приводит к выходу воды в ткани. Развиваются почечные отеки. Это происходит на фоне повышенного артериального давления.

В женском организме возникновение половой мотивации обусловлено накоплением в крови и андрогенов и эстрогенов. Первые образуются в надпочечниках, вторые - в яичниках.

45 . Половые железы. Мужские и женские половые гормоны и их физиологическая роль в формировании пола и регуляции процессов размножения.В мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских поло­вых гормонов — андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые со­держатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона опре­деляет адекватное развитие мужских первичных и вторичных по­ловых признаков (маскулинизирующий эффект). Под влиянием те­стостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, ме­няется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тестостерон ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов. Секреция тестостерона регулируется лютеинизирующим гормоном аденогипофиза. При увеличении содержания в крови тестостерона по механизму отрицательной обратной связи тормозится выработка лютеинизирующего гормона. Уменьшение продукции обоих гонадотропных гормонов — фолликулостимулирующего и лютеинизирующего, происходит также при ускорении процессов сперматогенеза.Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к отсутствию влечения к противоположному полу и утрате других типичных психофизиологических черт мужчины.

Женские половые железы. В женских половых железах (яич­ники) происходит выработка эстрогенов и прогестерона. Секреция этих гормонов характеризуется определенной циклично­стью, связанной с изменением продукции гипофизарных гонадотропинов в течение менструального цикла. Секреция гонадотропинов тормозится при высоком содержании в крови женских половых гормонов Во время беременности секреция эстрогенов существенно увеличивается за счет гормональной активности плаценты. Наиболее активным предста­вителем этой группы гормонов является β-эстрадиол. Прогестерон представляет собой гормон желтого тела; его продукция возрастает в конце менструального цикла. Основное назначение прогестерона заключается в подготовке эндометрия к имплантации оплодотворенной яйцеклетки. Под влиянием эстрогенов ускоряется развитие первичных и вто­ричных женских половых признаков. В период полового созревания увеличиваются размеры яичников, матки, влагалища, а также наружных половых органов. Усиливаются процессы пролиферации и рост желез в эндометрии. Эстрогены ускоряют развитие молочных желез, влияют на развитие костного скелета посредством усиления активности остеобластов. Действие этих гормонов приводит к увеличению биосинтеза белка; усиливается также образование жира, избыток которого откладывается в подкожной основе, что определяет внешние особенности женской фигуры. Под влиянием эстрогенов развивается оволосение по женскому типу: кожа становится более тонкой и гладкой, а также хорошо васкуляризованной.

Недостаточная секреция женских половых гормонов влечет за собой прекращение менструаций, атрофию молочных желез, влагалища и матки.

46. Кровь, ее количество, свойства и функции. Состав крови. Основные физиологические константы крови.

Кровь, лимфа, тканевая жидкость явл. внутренней средой организма, в которой протекают многие процессы гомеостаза. Кровь является жидкой тканью и вместе с кроветворными и депонирующими органами (костным мозгом, лимфоузлами, селезенкой) образует физиологическую систему крови. В организме взрослого человека около 4-6 литров крови или 6-8% от массы тела. Основными функциями крови являются:

1 .Транспортная, она включает: а. дыхательную - транспорт дыхат. газов О2 и СО2 б. трофическую - перенос питательных веществ, витаминов, микроэлементов; в. выделительную - транспорт продуктов обмена к органам выделения;

г. терморегуляторную -удаление избытка тепла от внутренних органов и мозга к коже; д. регуляторную - перенос гормонов и других веществ.2. Гомеостатическая. а. поддержание рН внутренней среды организма;б.сохранение постоянства ионного и водно-солевого баланса, осмотического давления.

З.Защитная функция. Обеспечивается содержащимися в крови иммунными антителами, специфич. противовирусными и антибак. в-вами, фагоцитарной активностью лейкоцитов. 4.Гемостатическая Fx. В крови имеется ферментная система свертывания, препятствующая кровотечению.Кровь состоит из плазмы и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов и тромбоцитов. Соотношение объема форменных элементов и плазмы называется гематокритом. В норме форменные элементы занимают 42-45% объема крови, а плазма -55-58%. Удельный вес цельной крови 1,052-1,061 г/см3. Ее вязкость равна 4,4-4,7 пуаз, а осмотическое деление 7,6 атм. Большая часть осмотического давления обусловлена находящимися в плазме Na и K, Сl. Растворы, осмотическое давление которых выше осмотического давления крови, называют гипертоническими. Если осмотическое давление раствора ниже, чем крови он называется гипотоническим (0,3%.NaCl).

47. Физиологические механизмы поддержания постоянства кислотно-основного равновесия.

Буферные системы крови. Параметры кислотно-основного равновесия.Обеспечиваются легкими, почками. ЖКХ, печенью С помощью легких из крови удаляется угольная кислота. В организме ежеминутно образуется 10 моль угольной кислоты. Закисление крови не происходит потому, что из нее образуются бикарбонаты. В капиллярах легких из анионов угольной кислоты и протонов вновь образуется угольная кислота, которая под влиянием фермента карбоангидразы расщепляется на углекислый газ и воду. Они выдыхаются. Через почки из крови выделяются нелетучие органические и неорганические кислоты. Они выводятся как в свободном состоянии, так и в виде солей. В физиологических условиях почки моча имеет кислую реакцию (рН=5-7). Почки участвуют в регуляции кислотно-щелочного гомеостаза с помощью следующих механизмов:Секреция водородных ионов, образовавшихся из угольной кислоты, в мочу.

Образование гидрокарбонатов, которые поступают в кровь и увеличивают ее щелочной резерв.

Синтез аммиака, катион которого может связываться с катионом, водорода.Обратное всасывание в канальцах из первичной мочи в кровь гидрокарбонатов.Фильтрация в мочу избытка кислых и щелочных соединений.Значение органов пищеварения для поддержания кислотно-щелочного равновесия небольшое. В частности, в желудке в виде соляной кислоты выделяются протоны. Поджелудочной железой и железами тонкого кишечника гидрокарбонаты. Но в то же время и протоны и гидрокарбонаты обратно всасываются в кровь. В результате реакция крови не изменяется.Кислотно-щелочной баланс крови характеризуется несколькими показателямиАктуальный рН. Это фактическая величина рН крови. В норме рН =7,35-7,45.

Парциальное напряжение С02 (РС02). Доя артериальной крови 36-44 мм. рт. ст.Стандартный бикарбонат крови (SВ). Содержание бикарбонат (гидрокарбонат) анионов при нормальном насыщении гемоглобина кислородом. Величина 21,3 - 24,3 моль/л.Актуальный бикарбонат крови (АВ). Истинная концентрация бикарбонат анионов. В норме практически не отличается от стандартного.Буферные основания (ВВ). Общая сумма всех анионов, обладающих буферными свойствами, в стандартных условиях. 40-60 моль/л.

Сдвиг реакции крови в кислую сторону называется ацидозом, в щелочную- алкалозом. Эти изменения рН могут быть дыхательными и недыхательнымн или метаболическими. Дыхательные изменения реакции крови обусловлены изменениями содержания углекислого газа. Недыхательные- бикарбонат анионов. Изменения рН могут быть компенсированными и некомпенсированными. Если реакция крови не изменяется, то это компенсированные алкалоз и ацидоз. Сдвиги компенсируются буферными системами, в первую очередь бикарбонатной. Поэтому они наблюдаются в здоровом организме. При недостатке или избытке буферных компонентов имеет место частично компенсированные ацидоз и алкалоз, но рН не выходит за пределы нормы. Если же реакция крови меньше 7,29 или больше 7,56 наблюдается некомпенсированные ацидоз и алкалоз. Самым грозным состоянием в клинике является некомпенсированный метаболический ацидоз. Он возникает вследствие нарушений кровообращения и гипоксии тканей, а как следствие, усиленного анаэробного расщепления жиров и белков и т.д. При рН ниже 7,0 происходят глубокие изменения функций ЦНС (кома), возникает фибрилляция сердца, падает артериальное давление, угнетается дыхание и может наступить смерть. Метаболический ацидоз устраняется коррекцией электролитного состава, искусственной вентиляцией и т.д.

Буферные системы - это комплекс слабых кислоты и основания, который способен препятствовать сдвигу реакции, в ту или иную сторону. Кровь содержит следующие буферные системы:

Бикарбонатная или гидрокарбонатная. Она состоит из свободной угольной кислоты и гидрокарбонатов натрия и калия (NaHСОз и КНСОз). При накоплении в крови щелочей, они взаимодействуют с угольной кислотой. Образуются гидрокарбонат и вода. Если кислотность крови возрастает, то кислоты соединяются с гидрокарбонатми. Образуются нейтральные соли и угольная кислота. В легких она распадается на углекислый газ и воду, которые выдыхаются.2.Фосфатная буферная система. 0на является комплексом гидрофосфата и дигидрофосфата натрия (Nа2НРО4), и NаН2РО4). Первый проявляет свойства основания, второй слабой кислоты. Кислоты образуют с гидрофосфатом натрия нейтральную соль и дигидрофосфат натрия (Nа2НРО4 +H2CO3=NaHCO3+NaH2PO4) 3.белковая буферная система. Белки являются буфером благодаря своей амфотерности(они проявляют либо щелочные, либо кислотные свойства). Хотя буферная емкость белковой системы небольшая, она играет важную роль в межклеточной жидкости.Гемоглобиновая буферная система эритроцитов. Самая мощная буферная система. Состоит из восстановленного гемоглобина и калиевой соли оксигемоглобина. Аминокислота гистидин, водящая в структуру гемоглобина, имеет карбоксильные и амидные группировки. Первые обеспечивают гемоглобину свойства слабой кислоты, вторые слабого основания. При диссоциации оксигемоглобина в капиллярах тканей на кислород и гемоглобин, последний приобретает способность скрываться с катионами водорода. Они образуются в результате диссоциации, образовавшейся из углекислого газа угольной кислоты. Анионы угольной кислоты связываются с катионами калия, находящимися в эритроцитах и катионами натрия в плазме крови. Образуются гидрокарбонаты калия и натрия, сохраняющие буферную емкость крови. Кроме того, восстановленный гемоглобин может непосредственно связываться с углекислым газом с образованием карбогемоглобина. Это также препятствует сдвигу реакции крови в кислую сторону. Кислотно-щелочной баланс крови характеризуется несколькими показателями: Актуальный рН. Это фактическая величина рН крови. В норме рН =7,35-7,45.Парциальное напряжение С02 (РС02). Доя артериальной крови 36-44 мм. рт. ст. Стандартный бикарбонат крови (SВ). Содержание бикарбонат (гидрокарбонат) анионов при нормальном насыщении гемоглобина кислородом. Величина 21,3 - 24,3 моль/л.Актуальный бикарбонат крови (АВ). Истинная концентрация бикарбонат анионов. В норме практически не отличается от стандартного.Буферные основания (ВВ). Общая сумма всех анионов, обладающих буферными свойствами, в стандартных условиях. 40-60 моль/л.

48. Состав, свойства и значение компонентов плазмы крови, их характеристика и функциональное значение. Осмотическое и онкотическое давление крови, их роль.

Удельный вес плазмы 1,025-1,029 г/см3, вязкость 1,9-2,6. Плазма содержит 90-92% воды и 8-10% сухого остатка. В состав сухого остатка входят минеральные вещества (около 0,9%), в основном хлорид натрия, катионы калия, магния, кальция, анионы хлора, гидрокарбонат, фосфатанионы. Кроме того в нем имеются глюкоза, а также продукты гидролиза белков - мочевина, креатинин, аминокислоты и т.д. Они называются остаточным азотом. Содержание глюкозы в плазме 3,6-6,9 ммоль/л, остаточного азота 14,3-28,6 ммоль/л.

Особое значение имеют белки плазмы. Их общее количество 7-8%. Белки состоят из нескольких фракций, но наибольшее значение имеют альбумины, глобулины и фибриноген. Альбуминов содержится 3,5-5%, глобулинов 2-3%, фибриногена 0,3-0,4%. При нормальном питании в организме человека ежесуточно вырабатывается около 17 г альбуминов и 5 г глобулинов.

Функции альбуминов плазмы:1.Создают большую часть онкотического давления, обеспечивая нормальное распределение воды и ионов между кровью и тканевой жидкостью, мочеоб-разование.2.Служат белковым резервом крови, который составляет 200 г белка. Он используется организмом при белковом голодании.3.Благодаря отрицательному заряду способствуют стабилизации и препятствуют оседанию форменных элементов крови.4.Поддерживают кислотно-щелочное равновесие, являясь буферной системой.5.Переносят половые гормоны, желчные пигменты и ионы кальция. Эти же функции выполняют и другие фракции белков, но в значительно мень-шей мере. Им свойственны особые функции.Глобулины включают четыре субфракции - a1, a2, b и g-глобулины. Функции глобулинов:

1.a-глобулины участвуют в регуляции эритропоэза.

2.Необоходимы для свертывания крови.

3.Участвуют в растворении тромба.

4.a2-альбумин церулоплазмин переносит 90% ионов меди, необходимых организму.

5.Переносят гормоны тироксин и кортизол

6.b-глобулин трансферрин переносит основную массу железа.

7.несколько b-глобулинов являются факторами свертывания крови.

8.g-глобулины выполняют защитную функцию, являясь иммуноглобулинами. При заболеваниях их количество в крови возрастает.

Фибриноген является растворимым предшественником белка фибрина, из которого образуется сгусток крови тромб.

Онкотическое (коллоидно-осмотическое) давление плазмы крови - часть ос­мо­ти­че­ско­го давления, создаваемого белками плазмы крови. В норме25-30 мм рт. ст. Зависит в большей степени от альбуминов. Роль онкотического давления в обмене жидкости между кровью и тканями: чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот, влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике.

(осмотическое давление) - сила, обеспечивающая движение растворителя через полупроницаемую мембрану, разделяющую растворы с разной концентрацией веществ. Определяется суммарной концентраци­ей различных частиц плазмы крови (ио­нов и мо­ле­кул).

49. . Эритроциты. Их строение и функции. Гемолиз, его виды.

Эритроциты (Э)- это высокоспециализир. безъядерные клетки крови. Ядро утрачивается в процессе созревания. Э имеют форму двояковогнутого диска В среднем их диаметр около 7,5 мкм, а толщина на периферии 2,5 мкм. Благодаря форме ↑ поверхность Э для диффузии газов. Кроме того, это ↑ их пластичность. За счет высокой пластичности, они деформируются и легко проходят по капиллярам. У старых и патолог. Э пластичность низкая. Поэтому они задерживаются в капиллярах ретикулярной ткани селезенки и разрушаются там. Мембрана Э хорошо пропускает молекулы О2 и СО2. В мембране содержится до 52% белка.В нее встроена Na/K-АТФаза, удаляющая из цитоплазмы Na и закачивающая ионы K. Основную массу Э составляет хемопротеин гемоглобин.

Функции Э: Перенос О2 от легких к тканям.

2.Участие в транспорте СО2 от тканей к легким.

3.Транспорт воды от тканей к легким, где она выделяется в виде пара.4.Участвуют в свертывании крови, выделяя Эритроцитарные факторы свертывания.

5.Переносят аминокислоты на своей поверхности

.6. Участвуют в регуляции вязкости крови, вследствие пластичности. В одном микролитре крови мужчин содержится 4,5-5,0 млн. Э (4,5-5,0 * 1012 л). Женщин -3,7-4,7 млн. (3,7-4,7 * 10 л). Гемолиз - разрушение мембраны Э и выход гемоглобина в плазму. В результате кровь становится прозрачной. Различают следующие виды гемолиза.По месту возникновения: 1.Эндогенный, (в организме) 2.Экзогенный, вне его. По характеру: 1.Физиологический. Он обеспечивает разрушение старых и .патолог. форм Э.Имеется два механизма. Внутриклет. гемолиз происходит в макрофагах селезенки, костного мозга, клетках печени. Внутрисосуд., в мелких сосудах, из которых Hb с помощью белка плазмы переносится к клеткам печени. Там гем гемоглобина превращается в билирубин. В сутки разрушается около 6-7 г Hb.

2. Патологич. По механизму возникновения:

1.Химический. При воздействии на Э-ы веществ, растворяющих липиды мембраны. Это спирты, эфир, щелочи кислоты и т.д. 2.Температурный. При низких температурах в Э-ах образуются кристаллики льда, разрывающие их оболочку.3.Механический. Наблюдается при механич. разрывах мембраны. 4.Биологический. Это гемолитические яды бактерий, насекомых, змей. В результате переливания несовместимой крови. 5.Осмотический. Возникает в том случае, если Э-ы попали в среду с осмотическим давлением ниже, чем у крови. Вода входит в Э-ы, они набухают и лопаются.

50. Разновидности гемоглобина, его соединения, их физиологическое значение.Гемоглобин (Нb) это хемопротеин, содержащийся в эритроцитах. Его молекулярная масса 66000 дальтон. Молекулу гемоглобина образуют четыре субъединицы, каждая из которых включает гем, соединенный с атомом железом, и белковую часть глобин. Гем синтезируется в митохондриях эритробластов, а глобин в их рибосомах. У взрослого человека гемоглобин содержит две a- и две b-полипептидных цепи (А-гемоглобином). В зрелом возрасте он составляет основную часть гемоглобина. В первые три месяца внутриутробного развития в эритроцитах находится гемоглобин типа GI и G2. В последующие периоды внутриутробного развития и в первые месяцы после рождения основную часть составляет фетальный гемоглобин (F-гемоглобин). В его структуре две a- и две g-полипептидные цепи.

Один грамм гемоглобина способен связывать 1,34 мл кислорода. Соединение гемоглобина с кислородом, образующееся в капиллярах легких называется оксигемоглобином (HbO2). Он имеет ярко алый цвет. Гемоглобин, отдавший кислород в капиллярах тканей, называется дезоксигемоглобином или восстановленным (Hb). У него темно-вишневая окраску. От 10 до 30% углекислого газа, поступающего из тканей в кровь, соединяются с амидной группировкой гемоглобина. Образуется легко диссоциирующее соединение карбгемоглобин (HbCO2). В этом виде часть углекислого газа транспортируется к легким. В некоторых случаях гемоглобин образует патологические соединения. При отравлении угарным газом образуется карбоксигемоглобин (HbCO). Сродство гемоглобина с окисью углерода значительно выше, чем с кислородом, а скорость диссоциации карбоксигемоглобина в 200 раз меньше, чем оксигемоглобина. Поэтому присутствие в воздухе даже 1% угарного газа приводит к прогрессирующему увеличению количества карбоксигемоглобина и опасному угарному отравлению. Кровь теряет способность переносить кислород. Развивается гипоксия мозга и других тканей. При отравлении сильными окислителями, например нитритами, образуется метгемоглобин (MetHb). В этом соединении гемоглобина железо становится трехвалентным. Поэтому метгемоглобин очень слабо диссоциирующее соединение. Он не отдает кислород тканям.

Все соединения гемоглобина имеют характерный спектр..

Гемоглобин образует с соляной кислотой соединение коричневого цвета - солянокислый гематин. Форма его кристаллов зависит от видовой принадлежности крови. Содержание гемоглобина определяют методом Сали. Гемометр Сали состоит из 3 пробирок. Две из них, расположенные сбоку от центральной, заполнены стандартным раствором солянокислого гематина коричневого цвета. Средняя пробирка имеет градуировку в единицах гемоглобина. В нее наливают 0,2 мл соляной кислоты. Затем мерной пипеткой набирают 20 мкл крови и выпускают ее в соляную кислоту. Перемешивают содержимое пробирки и выдерживают 5 мин. Полученный раствор солянокислого гематина разводят водой до тех пор, пока его цвет не станет таким же, как в боковых пробирках. По уровню жидкости в средней пробирке определяется содержание гемоглобина. В норме в крови мужчин содержится 132-164 г/л (13,2-16,4 г %) гемоглобина. У женщин - 115-145 г/л (11,5-14,5 г %). Количество гемоглобина снижается при кровопотерях, интоксикациях, нарушениях эритропоэза, недостатке железа, витамина В12 и т.д. Кроме этого определяют цветовой показатель.Это отношение содержания гемоглобина в крови к количеству эритроцитов. В норме его величина составляет 0,85-1,05.

51. Лейкоциты, их виды. Функции различных видов лейкоцитов.

Лейкоциты - клетки крови, содержащие ядро. У одних лейкоцитов цитоплазма содержит гранулы, - гранулоциты. У других зернистость отсутствует- агранулоциты. Выделяют три формы гранулоцитов.Эозинофилы, базофилами, нейтрофилам. Агранулоциты подразделяются на моноциты и лимфоциты. Все гранулоциты и моноциты образуются в красном костном мозге. Лимфоциты также образ. из стволовых клеток костного мозга, но размножаются в лимфоузлах, аппендиксе, селезенке, тимусе..

Общей Fx всех лейкоцитов является защита организма от инфекций. Нейтрофилы находятся в сосудистом русле 6-8 часов, а затем переходят в слизистые оболочки. Они составляют большинство гранулоцитов. Основная Fx нейтрофилов - уничтожение бактерий и токсинов. Базофилы (Б) содержатся в количестве 0-1%. Они находятся в кровеносном русле 12 часов. Крупные гранулы Б содержат гепарин и гистамин. За счет выделяемого ими гепарина ускоряется липолиз жиров в крови. На мембране базофилов имеются рецепторы, к которым присоединяются глобулины. В свою очередь с глобулинами могут связываться аллергены. В результате из базофилов выделяется гистамин. Возникает аллергическая реакция. Гистамин оказывает противовоспалит. действие. В базофилах содержится фактор активирующий тромбоциты, который стимулирует их агрегацию. Выделяя гепарин и гистамин, они предупреждают образование тромбов в мелких венах легких и печени. Эозинофилы содержатся в количестве 1-5%. Утром их меньше, вечером больше. Э обладают способностью к фагоцитозу, связыванию белковых токсинов и антибакт активностью. Моноциты наиболее крупные клетки крови. Их 2-10%. Макрофаги вырабатывают больше 100 биологически активных в-в - эритропоэтин, простагландины и лейкотриены. М фагоцитируют и уничтожают микроорганизмы, простейших паразитов, старые и поврежденные, опухолевые клетки. Кроме того, М участвуют в формировании иммунного ответа, воспаления, стимулируют регенерацию тканей.Лимфоциты составляют 20-40% всех лейкоцитов. Они делятся на Т- и В-лимфоциты. Первые дифференцируются в тимусе, вторые в различных лимфатических узлах. Т-клетки делятся на несколько групп. Т-киллеры уничтожают чужеродные белки-антигены и бактерии. Т-хелперы участвуют в реакции антиген-антитело. Т-клетки иммунологической памяти запоминают структуру антигена и распознают его. Т-амплификаторы стимулируют иммунные реакции, а Т-супрессоры тормозят образование иммуноглобулинов. В-лимфоциты составляют меньшую часть. Они вырабатывают иммуноглобулины и могут превращаться в клетки памяти.Общее количество лейкоцитов 4000-9000 в мкл крови или 4-9*109 л.↓ содержания лейкоцитов называется лейкопенией, ↑ -лейкоцитозом. Чаще всего лейкоцитоз и лейкопения возникают при различных заболеваниях.

52. Неспецифические и специфические факторы резистнентности

Неспецифические факторы резистентности (резистентность — совокупность генетически детерминированных неспе­цифических защитных факторов, обусловливающих невосприимчивость к инфекциям) первыми "встают" на защиту при действии патогенных (чаще всего инфекционных) агентов. Среди факторов естественной резистентности выделяют:

1.Естественные барьеры: кожа и слизистые оболочки — поверхности, которые первыми вступают в контакт с патоген­ными факторами.

2.Систему фагоцитов, включающую нейтрофилы и мак­рофаги.

3.Систему комплемента (совокупность сывороточных бел­ков), тесно взаимодействующую с фагоцитами.

4. Интерфероны.

5. Различные вещества, чаще всего белковой природы, участвующие в реакциях воспаления, фибринолиза и сверты­вания крови. Некоторые из них (например, лизоцим) облада­ют прямым бактерицидным действием.

6.Систему естественных (нормальных) киллеров, не обла­дающих антигенной специфичностью (Т-киллеры, К-клетки).

Итак, главной линией "обороны" служат кожа и слизис­тые оболочки, которые, будучи неповрежденными, не про­ницаемы для большинства инфекционных агентов. Способ­ность кожи к десквамации клеток обеспечивает механичес­кое удаление инфекта, а воздействие молочной кислоты и жирных кислот, содержащихся в поте и секрете сальных же­лез и обусловливающих низкое значение рН, оказывается губительным для большинства бактерий за исключение Staphylococcusaureus.

Секрет, выделяемый мукоцеллюлярным аппаратом слюн­ных желез, бронхов, желудка, кишечника и других внутренних органов, действует как защитный барьер, препятствуя при­креплению бактерий к эпителиальным клеткам и механически удаляя их за счет движения ресничек эпителия (при кашле, чихании).

Вымывающее действие слюны, слез, мочи способствует защите поверхности от повреждения, вызванного патогенными агентами. Во многих биологических жидкостях, выделяе­мых организмом, содержатся вещества, обладающие бактери­цидными свойствами (например, лизоцим в слюне, слезах, но­совых выделениях; соляная кислота в желудочном соке; лактопероксидаза в грудном молоке и т.д.).









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.