Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Характер срыва у крыльев без крутки.






У эллиптического крыла с идеальным распределением, коэффициента подъемной силы одинаков для всех сечений вдоль размаха, и срыв может начинаться в любом месте крыла.


Прямоугольное крыло, с одинаковой хордой по всему размаху, имеет тенденцию, к срыву начиная с центральной части. Это происходит потому, что локальный коэффициент подъемной силы уменьшается от корня к концу, конец крыла разгружается и это препятствует срыву.

Распределение и характер срыва стреловидных крыльев.
Стреловидное крыло отличается по характеру срыва от других форм.


 

На рис.3 показано сравнение распределения для стреловидных крыльев и крыльев обратной стреловидности. У крыла прямой стреловидности коэффициент подъемной силы увеличивается к концу крыла и уменьшается в корневых сечениях.


Прежде, чем говорить, почему это так, нужно заметить, что изменяя сужение стреловидного крыла, мы можем подобрать распределение для его соответствия идеальному эллиптическому распределению.

На рис.4 показано необходимое сужение, в зависимости от стреловидности, для получения у крыла, распределения близкого к эллиптическому. Но хотя характер срыва у такого «идеального» крыла не улучшается.


 

Крыло прямой стреловидности при срыве имеет тенденцию увеличивать угол атаки. Так как элевоны расположены в зоне срыва, они становятся не эффективными и ЛА теряет управление.
Крыло обратной стреловидности так же страдает от подобной «болезни». При срыве (в центральной части) концы крыла продолжают работать, центр давления перемещается вперед и выводит крыло на большие углы атаки.

Стреловидность и угол атаки.
Как происходит обтекание крыла потоком.
1.Скорость потока над крылом больше. Скорость потока снизу крыла меньше.
2. Подходя к крылу, поток отклоняется вверх.
3. Позади крыла поток отклоняется вниз.


 

Там где поток встречается с крылом и разделяется на два потока, обтекающие крыло сверху и снизу, есть зона с нулевым вектором скорости (скорость потока равна нулю), будем называть ее точкой разделения потока.


Расположение этой точки может быть использовано для определения угла атаки локального сечения крыла, так как при увеличении угла атаки эта точка двигается по нижней поверхности крыла, назад к задней кромке.


В случае прямого крыла, с эллиптическим распределением (без крутки), расположение точки разделения потока на сечении профиля, остается постоянным вдоль всего размаха.


У крыла со стреловидностью, положение точки разделения меняется вдоль размаха. Каждая секция крыла отклоняет поток на следующей секции так, что точки разделения смещаются постепенно назад. Это свидетельствует об увеличении угла атаки.



Из за изменения потока вдоль размаха, на стреловидном крыле, эффективный угол атаки, от корневого к концевому сечению, увеличивается. В результате, срыв начинается с концевого участка крыла.


Для обеспечения постоянства ушла атаки вдоль крыла, требуется некоторый отрицательный угол крутки. Это делает, распределение подъемной силы более эффективным и уменьшает тенденцию к срыву на концах крыла.

Замечания о крутке.
На ЛА обычной схемы часто используют отрицательную крутку для борьбы со срывом на концах крыла. При этом на малых углах атаки концевые секции могут создавать отрицательную подъемную силу.


В 20-30 годы на деревянных планерах, с большим удлинением, недостаточная прочность приводила к разрушению крыла аэродинамическими силами.


У стреловидного крыла эффективный угол атаки зависит от скорости. У крыла имеющего крутку, на некоторой скорости отклонение потока будет таким, что угол атаки по всему размаху станет постоянным, и крыло будет иметь близкое к «идеальному» распределение с одинаковым во всех сечениях коэффициентом подъемной силы. Это отличается от эллиптического крыла, которое на любой скорости остается «идеальным». Но все же, это некоторое улучшение по сравнению с крылом без крутки.

Какой в этом смысл?
Из того, что мы рассмотрели, напрашивается вопрос: если можно иметь «идеальное» распределение без стреловидности, для чего столько усилий, чтобы использовать стреловидное крыло которое только иногда работает «хорошо».
На стреловидном крыле распределение зависит не только от формы в плане, но и от стреловидности и от крутки. Наличие стреловидности, значительно, увеличивает сложность вычислений.


На данном этапе, наших «исследований» кажется, что потенциал у стреловидных крыльев только в уменьшении сопротивления по сравнению с обычными ЛА.
Можно ли добиться в этом направлении результата стоящего потраченных усилий? Это пока открытый вопрос. Существует множество новых подходов и возможно, появление мощных недорогих компьютеров, и возобновление интереса к стреловидным крыльям, приведет к положительному результату в этой области. RC Soaring Digest 2002 #9 B. & B. Kuhlman
Часть 3. Распределение крутки у стреловидных крыльев. Уменьшение паразитного рыскания.


Стреловидность и крутка.



Рис.1 демонстрирует скос потока вдоль крыла, влияющий на внешние (крайние) секции крыла, и увеличивающий эффективный угол атаки. Хотя на рисунке ситуация преувеличена, но это объясняет увеличение эффективного угла атаки и тенденцию к срыву на концах крыла.


Существует несколько путей уменьшения эффекта срыва с концов крыла. Это подбор профиля и использование гребней, но преимущество за использованием отрицательной крутки, от корня к концу крыла.



Рис.2 Показывает случай где крыло имеет крутку, и каждая секция имеет такой угол крутки, что его угол по отношению к набегающему потоку (эффективный угол атаки) равен нулю.
Отклонение потока прямо пропорционально, создаваемой предидушим внутренним сегментом крыла, подъемной силе. Поэтому случай на Рис.2 справедлив только для одного режима полета (скорости и углу атаки), но общий принцип очень важен.

Векторы.
Масса, длина, давление и время могут быть определены только числами, силы с другой стороны имеют и величину и направление, и называются векторами.



Рис.4А. Показывает действие векторов сил на ЛА, в равномерном горизонтальном моторном полете.


Весу W противодействует создаваемая крылом подъемная сила L. Сопротивление D противодействует создаваемой винтом тяге T. Так же обозначены, вектор R1 который представляет суммарную аэродинамическую силу, и вектор R2 представляющий суммарное действие веса и тяги. Эти результирующие векторы R1 и R2, получаются геометрическим сложением по правилу паралелограма. В данном случае, векторы R1 и R2 уравновешивают друг друга и ЛА находится в равномерном горизонтальном движении.


Если тяга увеличивается как на Рис.4В, длина вектора T увеличивается и сопротивление D не будет ее уравновешивать. Разница между этими силами создает ненулевую результирующую силу, которая будет разгонять ЛА до большей скорости.


Рис. 4С Показывает движение ЛА в безмоторном планировании в случае равномерного движения.


В данном случае, суммарная аэродинамическая сила R1, уравновешивает вес W. Вектор сопротивления D параллелен потоку воздуха, вектор подъемной силы L перпендикулярен потоку воздуха.


Если нос планера наклонится больше вниз, как на Рис.4D, направление полета изменится и векторы D и L повернутся вслед за изменившимся направлением набегающего потока. Суммарная аэродинамическая сила R1 так же повернется и отклонится от вертикали. В результате суммарное действие вектора веса W и вектора R1, не будет больше равно нулю и появится сила Ti, которая будет разгонять ЛА вперед. До тех пор, пока сила сопротивления не уравновесит эту силу индуцированной тяги Ti.







Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.