Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Спирты в пищевой промышленности





Такой спирт, как этанол является основой всех алкогольных напитков. А получают его из сырья, которое содержит сахар и крахмал. Таким сырьем может быть сахарная свекла, картофель, виноград, а также разные злаковые культуры. Благодаря современным технологиям при производстве спирта происходит его очистка от сивушных масел.

В натуральном уксусе также присутствует сырье, полученное на основе этанола. Этот продукт получается благодаря окислению уксуснокислым бактериям и аэрированию.

Но в пищевой промышленности используют не только этанол, но и глицерин. Эта пищевая добавка способствует соединению несмешиваемых жидкостей. Глицерин, который входит в состав ликеров, способен придавать им вязкость и сладкий вкус.

Также, глицерин применяют при изготовлении хлебобулочных, макаронных и кондитерских изделиях.

 

Медицина

В медицине этанол просто незаменим. В этой отрасли он широко применяется в качестве антисептика, так как обладает свойствами, которые способны уничтожать микробы, задерживать болезненные изменения в крови и не допускают разложения в открытых ранах.

Этанолом пользуются медицинские работники перед проведением различных процедур. Этот спирт обладает свойствами обеззараживания и просушивания. При проведении искусственной вентиляции легких, этанол выступает в роли пеногасителя. А также этанол может быть одним из компонентов при анестезии.

При простуде этанол можно использовать, как согревающий компресс, а при охлаждении, как средство для растирания, так как его вещества способствуют восстановлению организма при жаре и ознобе.

В случае отравления этиленгликолем или метанолом, применение этанола способствует уменьшению концентрация токсичных веществ и выступает в роли противоядия.

Также огромную роль спирты оказывают фармакологии, так как они используются для приготовления целебных настоек и всевозможных экстрактов.

 

Спирты в косметике и парфюмерии


В парфюмерии без спиртов также никак не обойтись, так как основой практически всех парфюмерных продуктов является вода, спирт и парфюмерный концентрат. Этанол в этом случае выступает в роли растворителя душистых веществ. А вот 2-фенилэтанол обладает цветочным запахом и в парфюмерии может заменить натуральное розовое масло. Его применяют при изготовлении лосьонов, кремов и т.д.

Глицерин также является основой базы для многих косметических средств, так как имеет способность притягивать влагу и активно увлажнять кожу. А присутствие этанола в шампунях и кондиционерах способствует увлажнению кожных покровов и облегчает расчесывание волос после мытья головы.

 

Топливо


Ну а такие спиртосодержащие вещества, как метанол, этанол и бутанол-1 широко используются в качестве топлива.

Благодаря переработке такого растительного сырья, как сахарный тросник и кукуруза, удалось получить биоэтанол, который является экологически чистым биотопливом.

В последнее время производство биоэтанола стало популярным в мире. С его помощью появилась перспектива в возобновлении топливных ресурсов.

Растворители, поверхностно-активные вещества

Кроме уже перечисленных сфер применения спиртов, можно отметить и то, что они еще являются и хорошими растворителями. Наибольшей популярностью в этой области пользуются изопропанол, этанол, метанол. Они также используются при производстве битовой химии. Без них не возможен полноценный уход за автомобилем, одеждой, домашней утварью и т.д.

Использование спиртов в разных сферах нашей деятельности положительно влияет на нашу экономику и приносит комфорт в нашу жизнь.


19 Химия: Фенолы

Строение

Гидроксильная группа в молекулах органических соединений может быть связана с ароматическим ядром непосредственно, а может быть отделена от него одним или несколькими атомами углерода. Можно ожидать, что в зависимости от этого свойства веществ будут существенно отличаться друг от друга из-за взаимного влияния групп атомов (вспомните одно из положений теории Бутлерова). И действительно, органические соединения, содержащие ароматический радикал фенил С6Н5—, непосредственно связанный с гидроксильной группой, проявляют особые свойства, отличные от свойств спиртов. Такие соединения называют фенолами.


Фенолы — органические вещества, молекулы которых содержат радикал фенил, связанный с одной или несколькими гидроксигруппами.

Так же как и спирты, фенолы классифицируют по атомности, т. е. по количеству гидроксильных групп.

Одноатомные фенолы содержат в молекуле одну гидроксильную группу:

 

Существуют и другие многоатомные фенолы, содержащие три и более гидроксиль-ные группы в бензольном кольце.

Познакомимся подробнее со строением и свойствами простейшего представителя этого класса — фенолом С6Н50Н. Название этого вещества и легло в основу названия всего класса — фенолы.

Физические свойства
Твердое бесцветное кристаллическое вещество, tºпл = 43 °С, tº кип = °С, с резким характерным запахом. Ядовит. Фенол при комнатной температуре незначительно растворяется в воде. Водный раствор фенола называют карболовой кислотой. При попадании на кожу он вызывает ожоги, поэтому с фенолом необходимо обращаться осторожно.

Строение молекулы фенола

В молекуле фенола гидроксил непосредственно связан с атомом углерода бензольного ароматического ядра.

Вспомним строение групп атомов, образующих молекулу фенола.

Ароматическое кольцо состоит из шести атомов углерода, образующих правильный шестиугольник, вследствие,sр2-гибридизации электронных орбиталей шести атомов углерода. Эти атомы связаны Þ-связями. Не участвующие в образовании ст-связей р-электроны каждого атома углерода, перекрывающиеся по разные стороны плоскости Þ-связей, образуют две части единого шестиэлектронного п -облака, охватывающего все бензольное кольцо (ароматическое ядро). В молекуле бензола С6Н6 ароматическое ядро абсолютно симметрично, единое электронное п -облако равномерно охватывает кольцо атомов углерода под и над плоскостью молекулы (рис. 24).

Ковалентная связь между атомами кислорода и водорода гидроксиль-ного радикала сильно полярна, общее электронное облако связи О—Н смещено в сторону атома кислорода, на котором возникает частичный отрицательный заряд, а на атоме водорода — частичный положительный заряд. Кроме того, атом кислорода в гидроксильной группе имеет две неподеленные, принадлежащие только ему электронные пары.

В молекуле фенола гидроксильный радикал взаимодействует с ароматическим ядром, при этом неподеленные электронные пары атома кислорода взаимодействуют с единым тс-облаком бензольного кольца, образуя единую электронную систему. Такое взаимодействие неподеленных электронных пар и облаков тг-связей называют сопряжением. В результате сопряжения неподеленной электронной пары атома кислорода гидроксигруппы с электронной системой бензольного кольца уменьшается электронная плотность на атоме кислорода. Это снижение компенсируется за счет большей поляризации связи О—Н, что, в свою очередь, приводит к увеличению положительного заряда на атоме водорода. Следовательно, водород гидроксильной группы в молекуле фенола имеет «кислотный» характер.

Логично предположить, что сопряжение электронов бензольного кольца и гидроксильной группы сказывается не только на ее свойствах, но и на реакционной способности бензольного кольца.

В самом деле, как вы помните, сопряжение неподеленных пар атома кислорода с л-облаком бензольного кольца приводит к перераспределению электронной плотности в нем. Она понижается у атома углерода, связанного с ОН-группой (сказывается влияние электронных пар атома кислорода) и повышается у соседних с ним атомов углерода (т. е. положения 2 и 6, или орто-положения). Очевидно, что повышение электронной плотности у этих атомов углерода бензольного кольца приводит к локализации (сосредоточению) отрицательного заряда на них. Под влиянием этого заряда происходит дальнейшее перераспределение электронной плотности в ароматическом ядре — смещение ее от 3-го и 5-го атомов (.мета-положение) к 4-му (орто-положение). Эти процессы можно выразить схемой:

 

Таким образом, наличие гидроксильного радикала в молекуле фенола приводит к изменению л-облака бензольного кольца, увеличению электронной плотности у 2, 4 и 6-го атомов углерода (орто-, дара-положения) и уменьшению электронной плотности у 3-го и 5-го атомов углерода (мета-положения).

Локализация электронной плотности в орто- и пара-положениях делает их наиболее вероятными для атак электрофильных частиц при взаимодействии с другими веществами.

Следовательно, влияние радикалов, составляющих молекулу фенола, взаимно, и оно определяет его характерные свойства.

Химические свойства фенола

Кислотные свойства

Как уже было сказано, атом водорода гидроксильной группы фенола обладает кислотным характером. Кислотные свойства у фенола выражены сильнее, чем у воды и спиртов. В отличие от спиртов и воды фенол реагирует не только с щелочными металлами, но и с щелочами с образованием фенолятов.

Однако кислотные свойства у фенолов выражены слабее, чем у неорганических и карбоновых кислот. Так, например, кислотные свойства фенола примерно в 3000 раз меньше, чем у угольной кислоты. Поэтому, пропуская через водный раствор фенолята натрия углекислый газ, можно выделить свободный фенол:

 

Добавление к водному раствору фенолята натрия соляной или серной кислоты также приводит к образованию фенола.

Качественная реакция на фенол

Фенол реагирует с хлоридом железа(ІІІ) с образованием интенсивно окрашенного в фиолетовый цвет комплексного соединения.

Эта реакция позволяет обнаруживать его даже в очень незначительных количествах. Другие фенолы, содержащие одну или несколько гидроксильных групп в бензольном кольце, также дают яркое окрашивание сине-фиолетовых оттенков в реакции с хлоридом железа(ІІІ).

Реакции бензольного кольца

Наличие гидроксильного заместителя значительно облегчает протекание реакций электрофильного замещения в бензольном кольце.

1. Бромирование фенола. В отличие от бензола для бромирования фенола не требуется добавления катализатора (бромида железа(ІІІ)).

Кроме того, взаимодействие с фенолом протекает селективно (избирательно): атомы брома направляются в орто- и пара-положения, замещая находящиеся там атомы водорода. Селективность замещения объясняется рассмотренными выше особенностями электронного строения молекулы фенола. Так, при взаимодействии фенола с бромной водой образуется белый осадок 2,4,6-трибромфенола.

Эта реакция, так же как и реакция с хлоридом железа(ІІІ), служит для качественного обнаружения фенола.

2. Нитрование фенола также происходит легче, чем нитрование бензола. Реакция с разбавленной азотной кислотой идет при комнатной температуре. В результате образуется смесь орто- и пара-изомеров нитрофенола:

 

3. Гидрирование ароматического ядра фенола в присутствии катализатора происходит легко.

4. Поликонденсация фенола с альдегидами, в частности, с формальдегидом, происходит с образованием продуктов реакции — фенолформальдегидных смол и твердых полимеров.

Взаимодействие фенола с формальдегидом можно описать схемой:

 

Вы, наверное, заметили, что в молекуле димера сохраняются «подвижные» атомы водорода, а значит, возможно дальнейшее продолжение реакции при достаточном количестве реагентов.

Реакция поликонденсации, т. е. реакция получения полимера, протекающая с выделением побочного низкомолекулярного продукта (воды), может продолжаться и далее (до полного израсходования одного из реагентов) с образованием огромных макромолекул. Процесс можно описать суммарным уравнением:

 

Образование линейных молекул происходит при обычной температуре. Проведение же этой реакции при нагревании приводит к тому, что образующийся продукт имеет разветвленное строение, он твердый и нерастворимый в воде. В результате нагревания феноло-формальдегидной смолы линейного строения с избытком альдегида получаются твердые пластические массы с уникальными свойствами. Полимеры на основе феноло-формальдегидных смол применяют для изготовления лаков и красок, пластмассовых изделий, устойчивых к нагреванию, охлаждению, действию воды, щелочей и кислот, они обладают высокими диэлектрическими свойствами. Из полимеров на основе фенолформальдегидных смол изготавливают наиболее ответственные и важные детали электроприборов, корпуса силовых агрегатов и детали машин, полимерную основу печатных плат для радиоприборов.

 

Клеи на основе феноло-формальдегидных смол способны надежно соединять детали самой различной природы, сохраняя высочайшую прочность соединения в очень широком диапазоне температур. Такой клей применяется для крепления металлического цоколя ламп освещения к стеклянной колбе. Теперь вам стало понятно, почему фенол и продукты на его основе находят широкое применение (схема 8).

1. Назовите вещества по их структурным формулам:

 

2. Объясните, почему кислотные свойства фенола выражены сильнее, чем кислотные свойства воды и спиртов.

3. При пропускании углекислого газа через водный раствор фенолята натрия реакционная смесь помутнела и приобрела характерный запах. Объясните изменения и приведите уравнения реакций в молекулярном, полном и сокращенном ионном виде.

4. Составьте уравнения реакций, соответствующих нескольким стадиям образования фенолформальдегидного полимера из тримера.

5*. Смесь непредельного спирта и гомолога фенола массой 1,37 г реагирует с 160 г 2%-ной бромной воды. Такая же смесь в реакции с избытком натрия выделяет 168 мл газа (н. у.). Определите молекулярные формулы веществ и их массовые доли в смеси.


20 1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Альдегиды и кетоны − производные углеводородов, в молекулах которых имеется одна или более карбонильных групп.

Карбонильная группа часто называется оксогруппой, поэтому эти вещества часто называют оксосоединениями.

Если карбонильная группа связана с одним радикалом и атомом водорода, то такие соединения называются альдегидами с общей формулой R—COH.

Соединения, в которых карбонильная группа соединена с двумя радикалами, называются кетонами с общей формулой R—CO—R.

В зависимости от природы углеводородного радикала альдегиды и кетоны могут быть предельными, непредельными или ароматическими. Мы начнем изучение этих органических веществ с предельных соединений.

Гомологические ряды альдегидов и кетонов представлены в таблице.

Углеводород Формула
А л ь д е г и д ы
Метаналь Н—СОН
Этаналь СН3—СОН
Пропаналь СН3—СН2—СОН
Бутаналь СН3—(СН2)2—СОН
Пентаналь СН3—(СН2)3—СОН
Гексаналь СН3—(СН2)4—СОН
Гептаналь и т. д. СН3—(СН2)5—СОН
К е т о н ы
Пропанон (ацетон) СН3—СО— СН3
Бутанон СН3—СО—СН2— СН3
Пентанон-2 СН3—СО—(СН2)2— СН3
Гексанон-2 СН3—СО—(СН2)3— СН3
Гептанон-2 и т.д. СН3—СО—(СН2)4— СН3






Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.