Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Множество. Операции над множествами. Свойства операции над множествами.





Множество. Операции над множествами. Свойства операции над множествами.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком, или - совокупность различных элементов, мыслимую как единое целое.

Объекты, из которых состоит множество, называют элементами множества или точками множества. Каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов.

Некоторые виды множества:

Пустое множество — множество, не содержащее ни одного элемента.

Универсальное множество — множество, содержащее все мыслимые объекты. Данное понятие трактуется в настоящее время как «множество, включающее все множества, участвующие в рассматриваемой задаче».

Частично упорядоченное множество, вполне упорядоченное множество — множество, на котором задано отношение порядка.

Операции на множествами:

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами.

Справедливы следующие свойства операций над множествами:

1. , где 0 -пустое множество.

2. , где 0 - пустое множество.

3.

4.

5.

6.

7. , если

8. , если

9.

10.

 

 

Понятие счетного множества. Теория вещественных чисел.

Счетное множество- есть бесконечное множество элементы которого можно пронумеровать натуральными числами, или это множество, равномощное множеству натуральных чисел.

Иногда счётными называются множества равномощные любому подмножеству множества натуральных чисел, то есть все конечные множества тоже считаются счётными.

Счётное множество является «наименьшим» бесконечным множеством, то есть в любом бесконечном множестве найдётся счётное подмножество.

Свойства:

1.Любое подмножество счётного множества не более чем счётно.[1]

2.Объединение конечного или счётного числа счётных множеств счётно.[1]

3.Прямое произведение конечного числа счётных множеств счётно.

4.Множество всех конечных подмножеств счётного множества счётно.

5.Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Примеры счетных множеств:

Простые числа Натуральные числа, Целые числа, Рациональные числа, Алгебраические числа, Кольцо периодов, Вычислимые числа, Арифметические числа.

Теория вещественных чисел.

(Вещественные = действительные – памятка для нас, пацаны.)

Множество R содержит рациональные и иррациональные числа.

Действительные числа, не являющиеся рациональными, называются иррациональными

Теорема: Не существует рационального числа, квадрат которого равен числу 2

Рациональные числа: ½, 1/3, 0.5, 0.333.

Иррациональные числа: корень из 2=1,4142356…, π=3.1415926…

Множество R действительных чисел обладает следующими свойствами:

1. Оно упорядоченное: для любых двух различных чисел a и b имеет место одно из двух соотношений a<b либо a>b

2. Множество R плотное: между двумя различными числами a и b содержится бесконечное множество действительных чисел х, т.е чисел, удовлетворяющих неравенству а<x<b.

Там еще 3-е свойство, но оно огромное, сорри

 

Пример.

Функция является бесконечной последовательностью рациональных чисел. Элементы этой последовательности начиная с первого имеют вид .

Предел последовательности — это объект, к которому члены последовательности приближаются с ростом номера. В частности, для числовых последовательностей предел — это число, в любой окрестности которого лежат все члены последовательности начиная с некоторого.

Теорема о двух милиционерах…

Если функция такая, что для всех в некоторой окрестности точки , причем функции и имеют одинаковый предел при , то существует предел функции при , равный этому же значению, то есть

Доказательство:

Из неравенства получаем неравенство . Тогда верно неравенство . Условие позволяет предположить, что для любого существует окрестность , в которой верны неравенства и . Из изложенной выше оценки максимумом следует, что при , что удовлетворяет определению предела, то есть [1].

 

Локальные

· Функция, непрерывная в точке , является ограниченной в некоторой окрестности этой точки.

· Если функция непрерывна в точке и (или ), то (или ) для всех , достаточно близких к .

· Если функции и непрерывны в точке , то функции и тоже непрерывны в точке .

· Если функции и непрерывны в точке и при этом , то функция тоже непрерывна в точке .

· Если функция непрерывна в точке и функция непрерывна в точке , то их композиция непрерывна в точке .

Глобальные.

· Функция, непрерывная на отрезке (или любом другом компактном множестве), равномерно непрерывна на нём.

· Функция, непрерывная на отрезке (или любом другом компактном множестве), ограничена и достигает на нём свои максимальное и минимальное значения.

· Областью значений функции , непрерывной на отрезке , является отрезок где минимум и максимум берутся по отрезку .

· Если функция непрерывна на отрезке и то существует точка в которой .

· Если функция непрерывна на отрезке и число удовлетворяет неравенству или неравенству то существует точка в которой .

· Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строго монотонна.

· Монотонная функция на отрезке непрерывна в том и только в том случае, когда область её значений является отрезком с концами и .

· Если функции и непрерывны на отрезке , причем и то существует точка в которой Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку.

Множество. Операции над множествами. Свойства операции над множествами.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком, или - совокупность различных элементов, мыслимую как единое целое.

Объекты, из которых состоит множество, называют элементами множества или точками множества. Каждый элемент множества уникален, и во множестве не может быть двух идентичных элементов.

Некоторые виды множества:

Пустое множество — множество, не содержащее ни одного элемента.

Универсальное множество — множество, содержащее все мыслимые объекты. Данное понятие трактуется в настоящее время как «множество, включающее все множества, участвующие в рассматриваемой задаче».

Частично упорядоченное множество, вполне упорядоченное множество — множество, на котором задано отношение порядка.

Операции на множествами:

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами.

Справедливы следующие свойства операций над множествами:

1. , где 0 -пустое множество.

2. , где 0 - пустое множество.

3.

4.

5.

6.

7. , если

8. , если

9.

10.

 

 







ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.