Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Материалы вакуумной техники. Влияние давления и температуры на фазовое состояние материала. Сравнительная оценка вакуумной стойкости металлических и неметаллических материалов.





 

Вольфрам – наиболее тугоплавкий металл. Его используют в качестве легирующего элемента в сталях и сплавах различного назначения, в электротехнике и электронике (нити накала, нагреватели в вакуумных приборах).

В качестве легирующих элементов к вольфраму добавляют молибден, рений, тантал. Сплавы вольфрама с рением сохраняют пластичность до –196oС и имеют предел прочности 150 МПа при температуре 1800oС.

Для сплавов на основе вольфрама характерна низкая жаростойкость, пленки образующихся оксидов превышают объем металла более, чем в три раза, поэтому они растрескиваются и отслаиваются.

 

Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений (боридов, карбидов и др.), содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора. Подшипники могут работать в условиях вакуума и при температурах до 500oС.

 


Билет 17.

1. Упрочняющая термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии: закалка + старение. Структура и свойства закаленных сплавов. Виды выделений при старении, их влияние на свойства сплавов.

Термическая обработка сплавов с переменной растворимостью компонентов в твердом состоянии

Переменная растворимость компонен­тов в твердом состоянии дает возмож­ность значительно упрочнять сплавы путем термической обработки. Это при­вело к широкому использованию спла­вов этого типа — стареющих сплавов в качестве конструкционных материалов повышенной и высокой прочности; при­меняют стареющие сплавы на алюми­ниевой, медной, железной, никелевой, кобальтовой, титановой и других осно­вах.

Рассмотрим принцип упрочняющей термической обработки стареющих сплавов на примере системы с промежу­точным соединением (рис.а).

К термически упрочняемым относятся сплавы составов от точки а до промежуточного соединения , в которых при охлаждении из твердого раствора выделяются вторичные кристаллы . При этом степень упрочнения тем выше, чем больше масса вторичных кристаллов и равновесном сплаве (рис.б).

Рассмотрим для примера сплав I состава точки С который в равновесном состоянии имеет двухфазную структуру, состоящую из кристаллов твердого раствора концентрации точки а и относительно крупных вторичных кристаллов .Сопротивление движению дисло­каций подрастает по мере уменьшения расстояний между частицами упрочняю­щей фазы, т. е. сплав I станет прочнее, когда и место немногочисленных крупных включений образуется большое количество мелких. Наибольшее препятствие для движения дислокаций создают включения, отстоящие друг от друга на 25-50 межатомных расстояний. В большинстве стареющих сплавов же­лательная дисперсная структура обра­зуется в результате термической обра­ботки, состоящей из двух операций закалки и старения.

При закалке сплавы нагревают до температур, обеспечивающих распад вторичных кристаллов. Для рассматри­ваемого сплава I такой будет температу­ра, несколько превышающая (см. рис. а). Быстрым охлаждением с тем­пературы закалки полностью подавляю процесс выделения вторичных кристал­лов и в результате получают одно­фазный сплав - перенасыщенный компо­нентом В твердый раствор. Перенасыще­ние твердого раствора относительно мало сказывается на повышении твер­дости и прочности, незначительно изме­няется и пластичность сплавов.

Пересыщенный твердый раствор представляет собой неравновесную структуру с повышенным уровнем сво­бодной энергии. Поэтому, как только подвижность атомов окажется доста­точно большой, твердый раствор будет распадаться - начнется процесс старения. Старение, происходящее при повы­шенных температурах, называют искус­ственным. В сплавах на основе низко­плавких металлов старение может про­исходить при температуре 20-25 С в процессе выдержки после закалки; та­кое старение называют естественным. При старении уменьшается концен­трация пересыщающего компонента в твердом растворе; этот компонент расходуется на образование выделений. Тип выделений (кристаллическая структура), их размер и характер сопря­женности с решеткой твердого раствора зависят как от вида сплава, так и от условий старения т. е. от температуры и времени выдержки.

В общем случае при распаде перенасы­щенных твердых растворов могут возникать образования следующих типов (они перечисляются и порядке возраста­ния энергии активации зарождения):

1) зоны Гинье-Престона;

2) кри­сталлы метастабильной фазы;

3) кри­сталлы стабильной фазы.

Зоны Гиньс-Престона (зоны ГП) представляют собой весьма малые (субмикроскопические) обьемы твердого раствора с резко повышенной концен­трацией растворенного компонента, со­храняющие решетку растворителя. Ско­пление растворенных атомов вызывает местное изменение периода решетки твердого раствора. При значительной разнице в размерах атомов А и В, как это, например, наблюдается в сплавах Al-Cu, зоны ГП имеют форму дисков, толщина которых (учитывая искажения решетки) составляет несколько межа­томных расстояний (рис. а), диаметр 10-50 нм. Диски закономерно ориенти­рованы относительно пространственной решетки растворителя. При небольшом различии в атомных диаметрах компо­нентов, как, например, в сплавах Al-Zn, обогащенные зоны имеют форму сфер.

Метастабильные фазы имеют иную пространственную решетку, чем твер­дый раствор, однако существует сходство в расположении атомов в определенных атомных плоскостях той ил иной решетки, что вызывает образование когерентной {или полу когерент­ной) границы раздела. Когерентная гра­ница при некотором различии кристал­лической структуры приводит к появле­нию переходной зоны с искаженной решеткой (рис.,6). Для метастабильных фаз характерна высокая дис­персность, что значительно повышает сопротивление движению дислокаций.

Стабильная фаза , имеет слож­ную пространственную решетку с пони­женным числом элементов симметрии и е большим числом атомов в элемен­тарной ячейке.

Вторичные кристаллы со стабильной структурой в большинстве сплавов вы­деляются в виде достаточно крупных частиц. Значительное различие кристал­лической структуры твердого раствора и стабильных кристаллов приводит к образованию некогерентной границе раздела

(рис. в) и, соответственно, к минимальным искажениям решетки твердого раствора вблизи границы. Упрочнение сплава при образовании стабильных кристаллов , оказывается меньшим, чем при образовании зон ГП и мета стабильных когерентных кристаллов.

Кривые старения (рис.) принят строить в координатах твердость (прочность)-длительность старения (при постоянной температуре). Условно примем, что максимальное упрочнение сплава I (см. рис. 5.4) достигается при выделении зон ГП.

Температура t0 выбрана настолько невысокой, что распада пересыщенного твердого раствора не происходит и, со­ответственно, не наблюдается измене­ния твердости (прочности) закаленного сплава.

Старение при температуре t1, вызывает повышение прочности вследствие образования зон ГП; если данная тем­пература недостаточна для того, чтобы активировать зарождение метастабильных кристаллов, то твердость (прочности) достигнет максимального значения и в дальнейшем не будет изменяться сколь угодно длительное время (рис. 5.6, сплошная линия). Если темпе­ратура t1 достаточная для зарождения метастабильных кристаллов, то твер­дость после достижения максимального значения начнет понижаться, сплав бу­дет “перестариваться” (рис. 5.6, штриховая линия).
2. Высокопрочные стали. Легированные стали, мартенситностареющие стали: их состав, марки, упрочняющая обработка, применение.

Легированные стали.

Легированной называется сталь, содержащая в своем составе один или несколько специально введенных легирующих элементов в количестве, заметно изменяющем свойства стали.

Принципы маркировки стали:

Марка легированной стали – буквенно-цифровой код ее химического состава.

Каждый элемент обозначается заглавной буквой русского алфавита:

а) по первой букве русского названия Н – Ni; В – W; Т – Ti; Х – Cr; М – Mo; Г – Mn; Д – Cu; Ю – Al; А – N; Б – Nb;

б) по первой букве латинского названия С – Si;

в) просто условное обозначение Ф – V;

Марка легированной стали:

Если число соответствующее содержанию углерода двухзначное, то это содержание углерода в сотых долях процента, если в единицах, то это содержание углерода в десятых долях процента.

 

Широкое применение в технике получила высокопрочная мартенсито-стареющая сталь Н18К9М5Т (<=0.03% С, ~18% Ni, ~9% Co, ~5% Mo, ~0.6 Ti).

Кроме стали Н18К9М5Т нашли применение менее легированные мартенсито-стареющие стали: Н12К8М3Г2, Н10Х11М2Т (sв=1400¸1500МПа), Н12К8М4Г2, Н9Х12Д2ТБ (sв=1600¸1800МПа), KCU=0.35¸0.6 МДж/м2, s0.2=1800¸2000МПа. Мартенсито-стареющие стали имеют высокий предел упругости s0.002=1500МПа.

Мартенсито-стареющие стали применяют в авиационной промышленности, в ракетной технике, в судостроении, в приборостроении для упругих элементов, в криогенной технике и т.д. Эти стали дорогостоящие.

 


Билет 18

1. Диаграмма состояния двойных сплавов для случая образования промежуточной фазы, фазовый и структурный анализ.

Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)

 

Диаграмма состояния представлена на рис. 5.7.

По внешнему виду диаграмма похожа на диаграмму состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии. Отличие в том, что линии предельной растворимости компонентов не перпендикулярны оси концентрации. Появляются области, в которых из однородных твердых растворов при понижении температуры выделяются вторичные фазы.

На диаграмме:

· df – линия переменной предельной растворимости компонента В в компоненте А;

· ek – линия переменной предельной растворимости компонента А в компоненте В.

Кривая охлаждения сплава I представлена на рис. 5.7 б.

Рис. 5.7. Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (а) и кривая охлаждения сплава (б)

 

Процесс кристаллизации сплава I: до точки 1 охлаждается сплав в жидком состоянии. При температуре, соответствующей точке 1, начинают образовываться центры кристаллизации твердого раствора . На участке 1–2 идет процесс кристаллизации, протекающий при понижающейся температуре. При достижении температуры соответствующей точке 2, сплав затвердевает, при дальнейшем понижении температуры охлаждается сплав в твердом состоянии, состоящий из однородных кристаллов твердого раствора . При достижении температуры, соответствующей точке 3, твердый раствор оказывается насыщенным компонентом В, при более низких температурах растворимость второго компонента уменьшается, поэтому из -раствора начинает выделяться избыточный компонент в виде кристаллов . За точкой 3 сплав состоит из двух фаз: кристаллов твердого раствора и вторичных кристаллов твердого раствора .
2. Факторы, влияющие на износостойкость в условиях абразивного из нашивания, в условиях высоких удельных давлений, в условиях кавитации. Износостойкие материалы высокой твердости, износостойкие материалы невысокой твердости. Состав, марки, свойства, применение.


Билет 19

1. Твердые растворы и промежуточные фазы. Влияние состава на свойства твердых растворов.

 

Основы теории сплавов.

Сплав – вещество, содержащее в своем составе два или более компонентов, по крайней мере один из которых – металл.

Компонент – химическое вещество, входящее в состав сплава.

В дальнейшем будем рассматривать двойные сплавы.

Различные типы кристаллических сплавов.

1. Твердые растворы – кристаллы, у которых один из компонентов образует собственную кристаллическую решетку, а второй присутствует в виде отдельных атомов, то есть собственной кристаллической решетки не имеет. Первый компонент называют растворителем, а второй – растворенным компонентом.

Выделяют твердые растворы внедрения и твердые растворы замещения.

В твердых растворах внедрения – атомы растворенного вещества находятся в межатомных промежутках растворителя.

Особенности:

– растворенные вещества должны иметь малый атомный радиус (обычно это неметалл);

– ограниченная растворимость;

В твердых растворах замещения – атомы растворенного вещества замещают атомы растворителя в узлах кристаллической решетки.

Особенности

– растворенное вещество такого же типа, как и растворитель (атомы близки по размеру);

– часто имеют неограниченную растворимость;

2. Химические соединения. Кристаллы, в структурах которых атомы двух компонентов образуют химическую связь.

Особенности:

– сложная кристаллическая решетка, в которой оба компонента занимают строгоопределенные места;

– постоянный химический состав (стехиометрический) металл-неметалл;

3. Интерметаллидные соединения – химические соединения между двумя металлами. МеnМеm.

Особенности:

– постоянный состав;

– способность образовывать твердые растворы (внедрения);

 

2. Конструкционные стали, выбор которых определяется технологичес кими свойствами: стали с высокой обрабатываемостью резанием, свариваемостью, штампуемостью. Состав, марки, обработка, применение.

 

Конструкционными называются стали, предназначенные для изготовления деталей машин (машиностроительные стали), конструкций и сооружений (строительные стали).

Стали с повышенной обрабатываемостью резанием

Наиболее часто применяют автоматные стали А12, А20, А40, имеющие повышенное содержание серы (0.08-0.3%), фосфора (<=0.05%) и марганца (0.7-1.0%). Сталь 40Г содержит 1.2-1.55% Mn.

Фосфор, повышая твердость, прочность и охрапчивая сталь, способствует образованию ломкой стружки и получению высокого качества поверхности.

Стали обладают большой анизотропией механических свойств, склонны к хрупкому разрушению, имеют пониженный предел выносливости. Поэтому сернистые автоматные стали применяют лишь для изготовления неответственных изделий - преимущественно нормалей или метизов.

Стали для холодной штамповки

Для обеспечения высокой штампуемости отношение sв/s0.2 стали должно быть 0.5-0.65 при y не менее 40%. Штампуемость стали тем хуже, чем больше в ней углерода. Кремний, повышая предел текучести, снижает штампуемость, особенно способность стали к вытяжке. Поэтому для холодной штамповки более широко используют холоднокатаные кипящие стали 08кп, 08Фкп (0.02-0.04% V) и 08Ю (0.02-0.07% Al).
Билет20 1. Диаграмма состояния двойных сплавов с ограниченной переменной растворимостью компонентов в твердом состоянии. Термическая об работка сплавов этой диаграммы.

Диаграмма состояния и кривые охлаждения типичных сплавов системы представлены на рис.5.5.

1. Количество компонентов: К = 2 (компоненты А и В);

2. Число фаз: f = 3 (жидкая фаза и кристаллы твердых растворов (раствор компонента В в компоненте А) и (раствор компонента А в компоненте В));

3. Основные линии диаграммы:

· линия ликвидус acb, состоит из двух ветвей, сходящихся в одной точке;

· линия солидус аdcfb, состоит из трех участков;

· dm – линия предельной концентрации компонента В в компоненте А;

· fn – линия предельной концентрации компонента А в компоненте В.

4. Типовые сплавы системы.

При концентрации компонентов, не превышающей предельных значений (на участках Аm и nВ), сплавы кристаллизуются аналогично сплавам твердым растворам с неограниченной растворимостью, см кривую охлаждения сплава I на рис. 5.5 б. При концентрации компонентов, превышающей предельные значения (на участке dcf), сплавы кристаллизуются аналогично сплавам механическим смесям, см. кривую охлаждения сплава II на рис. 5.5 б.

Рис. 5.5 Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии (а) и кривые охлаждения типичных сплавов (б)

Сплав с концентрацией компонентов, соответствующей точке с, является эвтектическим сплавом. Сплав состоит из мелкодисперсных кристаллов твердых растворов и , эвт. (кр. тв. р-ра + кр. тв. р-ра )

Кристаллы компонентов в чистом виде ни в одном из сплавов не присутствуют.

Выбор конструкционных материалов для валов и осей в зависимости от уровня требуемых усталостной прочности, износостойкости, специальных свойств, способы повышения конструкционной прочности валов и осей.

Для валов применяются стали нормально прочности с поверхностным упрочнением, - это сруднеуглеродистые (0.3-0.6%) улучшаемые стали. Легирующие элементы: Хром, Марганец. ТО – закалка + высокий отпуск. Структура C+лиспесные спуцкорбиды+ценемтит зернистый. Свойства: высокая σв и σ-1. Т50, хорошая прокаливаемость

 

Билет21

Пластическая деформация и рекристаллизация металлов и сплавов. Сдвигово-дислокационный механизм пластической деформации. Изменение структуры и свойств при холодной и горячей деформациях. Возврат и рекристаллизация.

Деформация может быть упругой, исчезающей после снятия нагрузки, и пластической, остающейся после снятия нагрузки. При упругом деформировании под действием внешней силы изменяется расстояние между атомами в крист. решётке. Снятие нагрузки устраняет причину, вызвавшую изменение межатомного расстояния, атомы становятся на прежние места и деформация исчезает. При пластическом деформировании одна часть кристалла перемещается по отношению к другой. Если нагрузку снять, то перемещённая часть кристалла не возвратится на старое место, деформация сохранится. Наклёп. Перекристаллизация. Дисперсионное твердение.

Если пластическая деформация осуществляется при температуре выше Tр, то наклёпа нет. Эта деформация называется горячей пластической деформацией. Холодная пластическая деформация (давление) происходит при температуре ниже Tр, возникает упрочнение.

Рекристаллизация – возвращение свойств в первоначальное состояние в процессе нагрева наклёпанного металла. Процессы: уменьшение количества дефектов, рост зерна (до исходного). А.А. Бочвар показал: Tр = a·TплК (в Кельвинах). Чем выше Tпл, тем выше Tр. Вольфрам, молибден – самые тугоплавкие Me. Если чистый Me - a» 0,2, механические смеси - a» 0,4, твёрдые растворы - a» 0,6, химические соединения - a» 0,8.

Пластическая деформация происходит в результате скольжения или двойникования. Ранее предполагали, что при скольжении одна часть кристалла сдвигается относительно другой части на целое число периодов как единое целое. Необходимое для этого напряжение получается на несколько порядков выше действительного сдвигового напряжения.

Для железа теоретическое значение сдвигового напряжения МПа, .

В основу современной теории пластической деформации взяты следующие положения:

· скольжение распространяется по плоскости сдвига последовательно, а не одновременно;

· скольжение начинается от мест нарушений кристаллической решетки, которые возникают в кристалле при его нагружении.

Схема механизма деформации представлена на рис.6.6 а.

В равновесном состоянии дислокация неподвижна. Под действием напряжения экстраплоскость смещается справа налево при незначительном перемещении атомов. Нижняя часть плоскости Р/S (SR) сместится вправо и совместится с нижним краем экстра- плоскости РQ.

QR- остаточная деформация.

 

При дальнейшем движении дислокация пройдет всю плоскость скольжения и выйдет на поверхность зерна. При этом верхняя часть зерна сдвинута относительно нижней на один межатомный период решетки (рис. 6.6 б).

При каждом перемещении дислокации на один шаг необходимо разорвать связь только между двумя рядами атомов в плоскости Р/S, а не между всеми атомами, расположенными выше и ниже плоскости скольжения. Необходимое сдвиговое напряжение при этом мало, равно практически действительному..

Рис. 6.6. Схема дислокационного механизма пластической деформации а – перемещение атомов при двихении краевой дислокации на одно межатомное расстояние; б – перемещение дислокации через весь кристалл

 

Требования, предъявляемые к материалам для зубчатых колес, способы повышения их конструкционной прочности. Выбор сталей для зубчатых колес и их упрочняющей обработки в зависимости от уровня требуемых характеристик.

Хромоникелевые стали 20ХН, 12ХН3А применяют для изготовления деталей средних и больших размеров, работающих на износ при больших нагрузках (зубчатые колеса, шлицевые валы). Одновременное легирование хромом и никелем, который растворяется в феррите, увеличивает прочность, пластичность и вязкость сердцевины и цементованного слоя. Стали мало чувствительны к перегреву. Большая устойчивость переохлажденного аустенита в области перлитного и промежуточного превращений обеспечивает высокую прокаливаемость хромоникелевых сталей и позволяет проводить закалку крупных деталей с охлаждением в масле и на воздухе.


Билет22

1. Диаграмма состояния сплавов. Правила концентраций и отрезков. Использование диаграмм состояния для определения свойств сплавов и возможных видов их термической обработки.

Диаграммы состояния.

Рассматриваются только бинарные сплавы.

Диаграмма состояния – график, описывающий изменение структурного и фазового состава сплава при изменении температуры. Диаграммы состояния строятся в координатах температура – химический состав. Все диаграммы строятся экспериментально.

Существует несколько основных типов диаграмм состояния бинарных сплавов металлов:

Диаграммы I рода.

Компоненты не растворимы друг в друге в твердом состоянии.

Основные линии диаграммы:

abc – линия ликвидус – геометрическое место точек начала кристаллизации сплавов различного химического состава: Выше этой линии все сплавы находятся в жидком состоянии. L – liquid.

dbe – линия солидус – геометрическое место точек конца процесса кристаллизации; Ниже этой линии все сплавы находятся в твердом состоянии.

abd и bce – двухфазное состояние сплавов – происходит процесс кристаллизации.

Точка b – точка эвтектики; xb – эвтектический состав для данной пары компонентов.

Анализ превращений на диаграмме состояния каждого сплава необходимо вести вдоль вертикальной линии, проходящей через точку на оси химического состава, определяющую суммарный химический состав сплава. То есть состав сплава определяется точкой на диаграмме с координатами температура–химический состав.Структура и фазовый состав будет определяться областью, в которую попадет эта точка. Сплав (3) – эвтектический сплав, включающий в себя оба компонента; кристаллизуется аналогично чистым компонентам при постоянной температуре.

Диаграммы II рода.

Компоненты неограниченно растворимы друг в друге в твердом состоянии.

Компоненты имеют близкие атомные параметры и кристаллические решетки.

a – твердый раствор компонентов А и В друг в друге. Для разных веществ химический состав кристаллов a будет разный. Кристаллы в ходе кристаллизации имеют разный химический состав между точками (1) и (2). Диаграммы такого типа имеют компоненты близкие по атомным параметрам и по типу кристаллической решетки.

Диаграммы III рода.

Компоненты ограниченно растворимы друг в друге.

abc – линия ликвидус; Xb – химический состав эвтектики.

adec – линия солидус.

df, eg – линии предельной растворимости в твердом состоянии.

a – ограниченный твердый раствор компонента А в компоненте В.

b – ограниченный твердый раствор компонента B в компоненте А.

Сплав (1): Выше t1 – охлаждение с высокой скоростью, зависящее от внешних условий. 1-2 – первичная кристаллизация, образование a твердого раствора. Вследствие низкого содержания компонента А в исходном сплаве при достижении t2 весь компонент А расходуется на образование a-кристаллов, следовательно в точке 2 – однофазный твердый сплав. 2-3 – остывание сплава; превращений нет. Ниже температуры t3 – точка 3 соответствует достижению a-кристаллического состояния насыщенности, дальнейшее понижение температуры приводит к выделению избыточного компонента А за счет диффузии в небольшие зоны на границе кристаллов. Эти зоны превращаются в мелкие кристаллы b, то есть происходит вторичная кристаллизация внутри твердой фазы.

Сплав (2): Процесс аналогичен образованию эвтектики, толь ко вместо чистых компонентов А и В – a- и b-твердые растворы.

Сплав (3): Выше температуры t4 – охлаждение сплава – превращений нет. t4 – t5 – первичная кристаллизация a-кристаллов, при этом содержание компонента А в жидкости уменьшается и состав жидкости постепенно приближается к эвтектическому (при t5). 5–5' – состав жидкости соответствует эвтектическому, идет образование эвтектики (температура постоянна). Температура ниже t5 – охлаждение сплава, вторичная кристаллизация с образованием bII-вторичных кристаллов. Для заэвтектической области процессы и кривые охлаждения сплавов аналогичны, только a- и b-кристаллы меняются местами.

Диаграммы IV рода.

Компоненты образуют в твердом состоянии химические соединения.

Диаграммы для компонентов, образующих химические соединения, определяются числом возможных химических соединений, и представляют собой совокупность диаграмм различного типа 1, 2 или 3. В каждой из этих диаграмм чистые компоненты и соответствующие химические соединения могут играть роль как чистых компонентов, так и основы для твердых растворов. Это определяется физическими свойствами компонентов и их соединений. Важно, что на графике диаграммы надо обеспечить стыковку на важнейших точках линии ликвидус и солидус (должна получиться одна общая линия).

Правило отрезков.

Правило отрезков применяется для двухфазных областей диаграммы. С помощью правила отрезков можно для сплавов постоянного химического состава определить при изменении температуры:

1. Весовое соотношение между фазами.

2. Изменение химического состава фаз.

Правило отрезков для диаграмм I рода.

Для линий abd, bce и части диаграммы ниже линии de можно применить правило отрезков. Выберем сплав определенного химического состава x и рассмотрим применение правила отрезков для этого сплава при температуре t1. Общее состояние сплава определяется точкой f.

Правило отрезков позволяет определить относительное количество фаз.

1) Фазы L+B:

2) Химический состав фаз:

Относительное количество фаз определяется отношением соответствующей части горизонтального отрезка, проведенного для заданной температуры t1 – до пересечения с границами области к общей длине этого отрезка.

Химический состав фаз при заданной температуре определяется проекцией точек пересечения горизонтального отрезка с заданными границами областей на ось химического состава.

Правило отрезков для диаграмм II рода.

Для a1b2 работает правило отрезков: ;

Химический состав фаз для рассматриваемой области определяется проекциями точек, попадающих на границу с областью, занимаемой соответствующей фазой, то есть в донном случае точка g на границе с областью a – определяет химический состав a-кристаллов, точка h на границе с областью L – определяет химический состав жидкости.

Применим правило отрезков для точек 1, f и 2 сплава x. При этом химический состав образующихся a-кристаллов будет меняться от x, через xg до исходного состава x в соответствии с правилом отрезков, то есть при кристаллизации a-кристаллы, образующиеся на разных этапах кристаллизации имеют разный химический состав.

Это противоречие связано с тем, что рассматриваемая нами диаграмма состояния является равновесной, то есть:

а) Процесс фазового превращения происходит бесконечно медленно;

б) Происходит диффузионное выравнивание химических составов каждой фазы;

В действительности:

а) Скорость кристаллизации конечна;

б) Полного выравнивания химического состава твердой фазы не происходит, то есть в составе образовавшейся твердой структуры остаются a-кристаллы с отличающимся от среднего химическим составом. Это явление носит название химической ликвации.

Ликвация – процесс, при котором часть структуры сплава отличается по своему химическому строению от основного состава. В реальных сплавах всегда происходит процесс ликвации.

Правило отрезков для диаграмм III рода.

Применим правило отрезков для линий adf, fdeg и ceg. Для сплава состава x при температуре ti (точка i). Две фазы: жидкость и a-кристаллы: ; .

Для сплава x при температуре tl (точка l). Две фазы a и b: ; .

Для двухфазной области fdeg правило отрезков также работает. Изменение относительного количества и химического состава в этой области происходит за счет изменения растворимости компонентов друг в друге и соответствующих диффузионных процессов перераспределений внутри сплавов.

 

2 Цементуемые и азотируемые стали, их состав, марки, термическая обработка и применение.

Цементация химико-термическая обработка, заключающаяся в диффузионном насыщении поверхностного слоя атомами углерода при нагреве до температуры 900…950 oС.

Цементации подвергают стали с низким содержанием углерода (до 0,25 %).

Нагрев изделий осуществляют в среде, легко отдающей углерод. Подобрав режимы обработки, поверхностный слой насыщают углеродом до требуемой глубины. Глубина цементации (h) – расстояние от поверхности изделия до середины зоны, где в структуре имеются одинаковые объемы феррита и перлита (h. = 1…2 мм). Степень цементации среднее содержание углерода в поверхностном слое (обычно, не более 1,2 %).Более высокое содержание углерода приводит к образованию значительных количеств цементита вторичного, сообщающего слою повышенную хрупкость.На практике применяют цементацию в твердом и газовом карбюризаторе (науглероживающей среде).Участки деталей, которые не подвергаются цементации, предварительно покрываются медью (электролитическим способом) или глиняной смесью.

В результате цементации достигается только выгодное распределение углерода по сечению. Окончательно формирует свойства цементованной детали последующая термообработка. Все изделия подвергают закалке с низким отпуском. После закалки цементованное изделие приобретает высокую твердость и износостойкость, повышается предел контактной выносливости и предел выносливости при изгибе, при сохранении вязкой сердцевины.Комплекс термической обработки зависит от материала и назначения изделия.

Графики различных комплексов термической обработки представлены на рис. 15.2.

Рис. 15.2. Режимы термической обработки цементованных изделий

Цементации подвергают зубчатые колеса, поршневые кольца, червяки, оси, ролики.

Азотирование химико-термическая обработка, при которой поверхностные слои насыщаются азотом.

Впервые азотирование осуществил Чижевский И.П., промышленное применение – в двадцатые годы.

При азотировании увеличиваются не только твердость и износостойкость, но также повышается коррозионная стойкость.

При азотировании изделия загружают в герметичные печи, куда поступает аммиак NH3 c определенной скоростью. При нагреве аммиак диссоциирует по реакции: 2NH3>2N+3H2. Атомарный азот поглощается поверхностью и диффундирует вглубь изделия.

Фазы, получающиеся в азотированном слое углеродистых сталей, не обеспечивают высокой твердость, и образующийся слой хрупкий.

Для азотирования используют стали, содержащие алюминий, молибден, хром, титан. Нитриды этих элементов дисперсны и обладают высокой твердостью и термической устойчивостью.

Типовые азотируемые стали: 38ХМЮА, 35ХМЮА, 30ХТ2Н3Ю.

Глубина и поверхностная твердость азотированного слоя зависят от ряда факторов, из которых основные: температура азотирования, продолжительность азотирования и состав азотируемой стали.

В зависимости от условий работы деталей различают азотирование:

· для повышения поверхностной твердости и износостойкости;

· для улучшения коррозионной стойкости (антикоррозионное азотирование).

В первом случае процесс проводят при температуре 500…560oС в течение 24…90 часов, так как скорость азотирования составляет 0,01 мм/ч. Содержание азота в поверхностном слое составляет 10…12 %, толщина слоя (h) – 0,3…0,6 мм. На поверхности получают твердость около 1000 HV. Охлаждение проводят вместе с печью в потоке аммиака.

Значительное сокращение времени азотирования достигается при ионном азотировании, когда между катодом (деталью) и анодом (контейнерной установкой) возбуждается тлеющий разряд. Происходит ионизация азотосодержащего газа, и ионы бомбардируя поверхность катода, нагревают его до температуры насыщения. Катодное распыление осуществляется в течение 5…60 мин при напряжении 1100…1400 В и давлении 0,1…0,2 мм рт. ст., рабочее напряжение 400…1100 В, продолжительность процесса до 24 часов.

Антикоррозионное азотирование проводят и для легированных, и для углеродистых сталей. Температура проведения азотирования – 650…700oС, продолжительность процесса – 10 часов. На поверхности







Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.