Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)





Рентгеновское излучение.

Весь XIX в. происходило уточнение представлений о диапазоне электромагнитных волн, осуществля­лось продвижение в область более коротких волн. В 1895 г. В. Рентген обнаружил излучение с длиной волны, меньшей, чем у ультрафиолетового излучения.

Это излучение (Рентген назвал его Х-лучами) возникало при бомбардировке анода А потоком электронов, испускаемых ка­тодом К. Энергия электронов должна быть очень большой — порядка нескольких десятков тысяч электронвольт. Косой срез анода обеспечил выход рентгеновского излучения через стекло трубки.

В. Рентген не только открыл рентгеновское излучение, но и исследовал его свойства. Он определил, что оно сильно поглоща­ется плотными веществами — свинцом и другими тяжелыми ме­таллами. Им же было установлено, что рентгеновское излучение поглощается по-разному. Излучение, которое сильно поглощается, было названо мягким, мало поглощаемое — жестким. В дальнейшем было выяснено, что мягкому рентгеновскому излучению соответствуют более длинные волны, жесткому — более короткие. В 1901 г. В. Рентген первым из физиков получил Нобелевскую премию за открытие излучения, названного в его честь.

Гамма-излучение.

Гамма-излучение — самое коротковолновое электромагнитное излучение (длина волны меньше 10-10 м). Это излучение связано с ядерными процессами, явлениями радиоак­тивного распада, происходящими с некоторыми веществами как на Земле, так и в космосе.

Атмосфера Земли пропускает только часть всего электромаг­нитного излучения, поступающего из космоса. Например, почти все гамма-излучение поглощается земной атмосферой. Это обес­печивает возможность существования всего живого на Земле. Наиболее существенно гамма-излучение поглощается слоем озона в атмосфере, поэтому сохранение этого слоя — важнейшая эко­логическая задача.

Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)

Прошло уже более века с момента, когда в 1886 г. немецкий ученый Г.Герц построил первые в мире передатчик и приемник электромагнитных волн. Они были весьма примитивны, однако сослужили очень важную роль для науки.

Электромагнитной волной называется процесс распространения переменного электромагнитного поля в свободном пространстве с конечной скоростью (скоростью света). Физические причины существования электромагнитного поля связаны с тем, что изменяющееся во времени электрическое поле Е порождает магнитное поле Н, а изменяющееся Н - вихревое электрическое поле: обе компоненты Е и Н, непрерывно изменяясь, возбуждают друг друга.

В соответствии с длинами волн (l) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей – от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только от l, но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником – инфракрасным.

Международная классификация электромагнитных волн:

  Частоты, исключая нижний и включая верхний предел Наименование частоты Волны исключая верхний и включая нижний предел Наименование волны
Диапазон радио- частот < 300 мГц инфразвуковые > 103 Мм  
300...3000 мГц Гипернизкие 103...102 Мм Гектомегаметровые
3...30 Гц Крайненизкие 102...10 Мм Киломириаметровые
30...300 Гц Сверх низкие 10...1 Мм Гектомириаметровые
300...3000 Гц Ультра низкие 103...102 км Декамириаметровые
3..30 кГц Очень низкие 102...10 км Мириаметровые
30...300 кГц Низкие 10...1 км Километровые
300...3000 кГц Средние 103...102 м Гектометровые
3...30 МГц Высокие 102...10 м Декаметровые
30...300 МГц Очень высокие 10...1 м Метровые
300...3000 МГц Ультравысокие 102...10 см Дециметровые
3...30 ГГц Сверхвысокие 10...1 см Сантиметровые
30...300ГГц Крайне высокие 10...1 мм Миллиметровые
300...3000 ГГц Гипер высокие 103...102 мкм Децимиллиметровые
Оптический диапазон 3...30 ТГц Низкие инфракрасные 102...10 мкм Сантимиллиметровые
30...400 ТГц Высокие инфракрасные 105...7,5 ·103 А Микрометровые
400...750 ТГц Видимые (световые) 7,5 ·103...4 ·103 А  
750...3000 ТГц Низкие ультрафиолетовые 4·103...103 А Децимикрометровые
3·103...3·104 ТГц Высокие ультрафиолетовые 102...10 мм Сантимикрометровые
Верхний диапазон электро- магнитного спектра 3·104...3·105 ТГц Низкие рентгеновские 10...1 мм Нанометровые
3·105...3·106 ТГц Средние рентгеновские 103...102 пм Децинанометровые
3·106...3·107 ТГц Высокие рентгеновские 102...10 пм Сантинанометровые
3·107...3·108 ТГц Низкие Гамма (Альфа) 10...1 пм Пикометровые
3·108...3·109 ТГц Высокие (Бета) 103...102 фм Деципикометровые
> 3·109 ТГц Космические < 10 фм Фемтометровые

Мириаметровыми (или сверхдлинными) волнами (СДВ) называются электромагнитные волны очень низкой частоты (3 – 30 кГц), длины которых в вакууме лежат в интервале 100 – 10 км. Мощным естественным источником радиоволн этого диапазона являются молниевые разряды.

Для СДВ длина волны сравнима с расстоянием от поверхности Земли до ионосферы, поэтому они могут распространяться по сферическому волноводу Земля — ионосфера на очень большие расстояния с незначительным ослаблением (атмосферный волновод). Характерной особенностью СДВ при их распространении вокруг Земли является слабое затухание поля с удалением от излучателя и высокая его фазовая и амплитудная стабильность (по сравнению с радиоволнами более высоких частот) при регулярных и случайных вариациях свойств трассы распространения (суточные и сезонные изменения атмосферы, сезонные изменения свойств земной поверхности, ионосферные возмущения и т.д.). Это и обуславливает применение СДВ в глобальных радиосистемах высокой точности и надежности, несмотря на необходимость использования излучающих антенных систем больших размеров и более низкую скорость передачи информации. Кроме того радиоволны этого диапазона обладают большой глубиной проникновения в проводящие среды, что делает возможным их применение для связи с погруженными в морскую воду и в толщу земли объектами.

Использование СДВ.

СДВ широко используются в системах радиосвязи, радионавигации, передаче сигналов эталонных частот и единого времени, а также в геофизических исследованиях электрических свойств Земли, земной ионосферы и магнитосферы Земли.

Связь на сверхдлинных волнах для подводного флота имеет важнейшее значение. Сверхдлинные волны могут проникать в воду на большую глубину и подводные лодки могут принимать сообщения на сверхдлинных волнах не всплывая. Это очень важно для подводных лодок, особенно находящихся на боевом патрулировании, так как всякое всплытие демаскирует лодку. Поэтому подводные лодки обычно только принимают сообщения по СДВ-связи. Даже всплытие для передачи сообщения на коротких или ультракоротких волнах лодки выполняют только по приказу, полученному на сверхдлинных волнах.

Сверхдлинные волны отражаются ионосферой Земли на высоте 60-100 км, поэтому никакой спутник не в состоянии их обнаружить.

Станции ВМФ (которые обеспечивают связь с подводными лодками в подводном положении) можно также использовать для прогнозирования сильных землетрясений в различных точках земного шара. Дело в том, что сверхдлинные волны, изучаемые этой станцией, пронизывают не только толщу воды, но и земные недра. В результате анализа прохождения этих волн в земных недрах можно фиксировать изменения напряжения на стыках тектонических пластов и другие параметры. Имея такую картину, ученые-сейсмологи смогут разработать методику определения координат предстоящего землетрясения, его силы и ориентировочного времени. СДВ-станции могут также применяться для исследования геодинамики и поиска полезных ископаемых.

______________________________________________________________

 

 

Радиоволны с длиной волны более 1 километра имеют отличительную особенность - способность хорошо огибать Землю при своем распространении. Поэтому волны этой части диапазона способны распространяться далеко за пределами прямой видимости. Конечно, при удалении излучающей антенны за линию горизонта сигнал будет значительно ослаблен, но, в общем, в этом диапазоне частот может быть обеспечена достаточно уверенная связь на расстояниях в сотни и тысячи километров. Радиоволны, которые распространяются вдоль поверхности Земли, называют земными или поверхностными волнами. В этом диапазоне частот, кроме поверхностных волн, для связи используют и пространственные волны. Пространственными (ионосферными, небесными) называют такие волны, которые, будучи излученными от поверхности Земли, отразятся от ионосферы и вновь вернутся на Землю. Траектория распространения пространственной волны, вернувшейся на Землю после отражения от ионосферы, называется скачком. Электромагнитные волны нижней части радиодиапазона также хорошо отражаются от поверхности Земли (то есть с малыми потерями). Отраженные от Земли радиоволны при достижении ионосферы повторно отражаются от ее нижних слоев, образуя следующий скачок. Таким образом, упрощенную модель среды распространения длинных и сверхдлинных радиоволн можно представить в виде двух электропроводящих сфер с совмещенными центрами. Радиоволны распространяются в промежутке между этими сферами, попеременно отражаясь то от внешней, то от внутренней сферы. Земля вместе с нижней границей ионосферы образуют для этого диапазона своеобразный сферический волновод. В этом волноводе формируется траектория многоскачкового распространения радиоволн (рисунок 6.4). Рис. 6.4 Распространение длинных радиоволн пространственными лучами Изменения свойств ионосферы сказываются не столь существенно для этого диапазона радиоволн, поэтому связь на этих частотах достаточно устойчива даже на далеких расстояниях и слабо зависит от времени суток. Высокая стабильность распространения радиоволн этого диапазона используется, например, радиопередатчиками службы точных частот и времени, сигналы которых используются в системах связи всех диапазонов частот. В заключение следует отметить об особенностях распространения электромагнитных колебаний самой нижней части радиодиапазона. Поскольку величина потерь при распространении радиоволн в среде с потерями (почва, вода, ионизированные газы и т.д.) уменьшается с увеличением длины волны, то и глубина проникновения радиоволн в эту среду увеличивается с увеличением длины волны. Эта особенность распространения радиоволн используется, например, для связи с подводными лодками, погруженными на глубину в сотни метров от поверхности океана. Для такого (единственно возможного) вида радиосвязи используют очень низкие частоты (очень длинные волны), что требует больших размеров антенн и высоких мощностей радиопередатчиков. Радиоволны с длиной волны от 100 до 1000 метров так же, как и более длинные, распространяются и поверхностными, и пространственными волнами, но их распространение имеет свои особенности. Влияние нестабильностей параметров ионосферы на распространение радиоволн этого диапазона становится все заметнее, и длина пути, проходимого пространственной волной в точку приема, в разное время года и суток оказывается разной. Днем в этом диапазоне волн на расстояниях до нескольких сотен километров для связи используются поверхностные волны. С увеличением частоты колебаний требуется более высокая концентрация заряженных частиц ионосферы для формирования отраженной волны, при этом радиоволны проникают во все более высокие слои атмосферы. Но с увеличением длины пути, проходимой радиоволной в ионосфере, возрастают ее потери. Радиоволны этого диапазона достигают слой Е ионосферы и возвращаются к Земле. Днем более низкий слой D имеет высокую концентрацию и вызывает значительное ослабление радиоволн, поэтому пространственные волны этого диапазона весьма слабы. Ночью дальность связи может быть увеличена за счет того, что ночью слой D практически исчезает. Ослабление радиоволны в ионосфере значительно уменьшается и влияние пространственной волны в этом диапазоне становится заметнее. В конечном итоге это приводит к тому, что на больших дальностях в местах приема может наблюдаться эффект замирания, или фединга, проявляющийся в изменении уровня принимаемого сигнала. Основной причиной замирания сигналов является интерференция пространственной и поверхностной волн. На рисунке 6.5 показаны условные пути прохождения в точку, достаточно удаленную от излучающей антенны, поверхностной радиоволны 1 и пространственной радиоволны 2. Так как длина пути, который проходят радиоволны, может постоянно изменяться, то непрерывно изменяются и фазы приходящих сигналов. Рис. 6.5 Распространение поверхностных и пространственных радиоволн
Результат сложения двух сигналов одной частоты, но с различными фазами, изменяется от максимального значения (когда фазы приходящих колебаний совпадают) до минимального (когда фазы этих сигналов противоположны). Если мощности колебаний, приходящих с различных направлений, приблизительно одинаковы, то уровень принимаемого сигнала, образуемого в результате интерференции, может спадать практически до нуля. Вблизи передатчика, где присутствуют, в основном, поверхностные волны, эффект замирания практически отсутствует. На больших расстояниях, где возможно распространение и пространственной, и поверхностной волны, ночью вязь может улучшаться, но со значительными замираниями. И на очень больших расстояниях, куда практически не достигает земная волна, ночью возможен прием пространственной волны. Радиоволны с длиной волны от 10 до 100 метров распространяются также в виде пространственной и поверхностной волн, но с ростом частоты еще более возрастает поглощение Землей энергии поверхностных волн, и они ослабевают быстрее. Поэтому в коротковолновом радиодиапазоне распространение поверхностных волн ограничивается практически пределами прямой видимости. Далее простирается зона молчания, где невозможен уверенный прием сигналов. В диапазоне декаметровых волн также возможен эффект замирания. Причиной его также является интерференция, но уже двух или более пространственных лучей, приходящих в точку приема разными путями. На рисунке 6.6 показан ход лучей декаметровых волн, излученных из точки А. Волны этого диапазона еще глубже проникают в ионосферу. Граница распространения земных волн обозначена точкой В. В точку С поступают пространственные волны после первого отражения от ионосферы. Пояс земной поверхности между точками В и С образует зону молчания. В этой зоне поверхностные волны уже настолько ослаблены, что не могут быть использованы для связи, а отраженные от ионосферы волны достигают поверхности Земли на гораздо большем удалении от передатчика. На еще большем удалении от точки излучения А возможен приход волны после двукратного отражения от ионосферы. Если в этот же пункт приема приходит другая пространственная волна, например, после однократного отражения от ионосферы, то в точке приема D наблюдается интерференция сигналов и, как следствие ее, - замирание во время приема. Рис. 6.6 Распространение декаметровых радиоволн Радиоволны, длина которых менее 10 метров, практически не обладают дифракцией, то есть не могут огибать препятствия на пути распространения. Концентрация заряженных частиц в ионосфере недостаточна для значительного влияния на траекторию распространения радиоволн этого диапазона, поэтому радиоволны практически не отражаются от ионосферы. С одной стороны, это делает невозможной дальнюю связь на поверхности Земли за пределами прямой видимости, с другой стороны, позволяет использовать радиоволны этого диапазона для спутниковой связи. Таким образом, основные характеристики распространения электромагнитных колебаний ультракоротковолнового (УКВ) диапазона определяют возможной связь в этом диапазоне в пределах прямой видимости между передающей и приемной антеннами. Для увеличения дальности связи антенны устанавливают на высокие опоры (рисунок 6.7). Рис. 6.7 Максимальная дальность связи на ультракоротких волнах Максимальная дальность связи DB (с учетом только шарообразной формы Земли, без уточнения рельефа местности) определяется высотами поднятия передающей и приемной антенн, соответственно h1 и h2, и радиусом Земли RЗ: (6.4) При использовании этой эмпирической формулы максимальное расстояние прямой видимости DB и радиус Земли RЗ следует выражать в километрах, а высоты поднятия антенн h1 и h2 - в метрах. В этом диапазоне волн также возможна интерференция сигналов, но уже с отраженными сигналами от Земли или других неровностей рельефа либо строений. На рисунке 6.8 условно показан ход лучей прямой и отраженной от поверхности Земли волн. Рис. 6.8 Распространение прямой и отраженной волн УКВ При достаточно большой мощности передатчика связь за горизонтом возможна и в этом диапазоне волн. Дальняя связь за пределами прямой видимости оказывается возможной благодаря тому, что в атмосфере Земли по ряду причин могут возникать локальные неоднородности. Эти неоднородности и вызывают рассеяние радиоволн, в том числе и в направлении пункта приема. При достаточной чувствительности приемного устройства может быть организована радиосвязь в труднодоступных районах на расстоянии нескольких сотен километров. На рисунке 6.9 представлена схема возможной связи с использованием рассеяния радиоволн на неоднородностях атмосферы. Рис. 6.9 Рассеяние радиоволн от неоднородностей атмосферы

 

 

Понятие информации

Термин информация происходит от латинского слова informatio – разъяснение, изложение. Первоначальное значение этого термина – «сведения, передаваемые людьми устным, письменным или иным способом». В середине ХХ века термин «информация» превратился в общенаучное понятие, означающее обмен сведениями между людьми, между человеком и автоматом, между автоматами, а также обмен сигналами в животном и растительном мире.

В философском смысле информация есть отражение реального мира. Это сведения, которые один реальный объект содержит о другом реальном объекте. Таким образом, понятие информации связывается с определенным объектом, свойства которого она отражает.

В информатике под информацией понимается сообщение, снижающее степень неопределенности знаний о состоянии предметов или явлений и помогающее решить поставленную задачу.

Изменение некоторой физической величины во времени, обеспечивающее передачу сообщений, называется сигналом.

Мы живем в материальном мире, состоящем из физических тел и физических полей. Физические объекты находятся в состоянии непрерывного движения и изменения, которые сопровождаются обменом энергией и переходом ее из одной формы в другую. Для того чтобы в материальном мире происходил обмен информацией, ее преобразование и передача, должны существовать носитель информации, передатчик, канал связи, приемник и получатель информации. Канал связи представляет собой среду, в которой происходит передача информации. Канал связи объединяет источник и получателя информации в единую информационную систему (рис. 1).

Подобные информационные системы существуют как в технических системах, так и в человеческом обществе и живой природе. Информационные системы можно разделить на естественные и искусственные. К первым относятся все естественно возникшие системы. Такими системам являются биологические организмы. Искусственными информационными системами являются информационные системы, созданные человеком.

Рис.1. Информационная система.

Зарегистрированные сигналы называются данными. Для их регистрации с целью хранения и передачи необходим некоторый язык. Этот язык должен быть понятен как отправителю информации, так и ее получателю. Данные могут нести в себе информацию о событиях, происходящих в материальном мире. Однако данные не тождественны информации. Для получения информации нужен метод обработки данных. Информация – это продукт взаимодействия данных и адекватных им методов их обработки.

Информация существует только в момент взаимодействия данных и методов. В остальное время она содержится в виде данных. Таким образом, во-первых, не существует информации самой по себе как некоторой самостоятельной сущности без ее носителя в виде некоторых материальных процессов, во-вторых, не существует информации безотносительно к субъекту, способному извлекать ее из полученного сообщения. Из одних и тех же данных разные получатели могут извлечь разную информацию в зависимости от адекватности методов их обработки.

Данные являются объективными, так как это результат регистрации объективно существующих сигналов, вызванных изменениями в материальных телах и полях. В то же время методы являются субъективными, так как в их основе лежат алгоритмы, составленные людьми.

Получатель информации оценивает ее в зависимости от того, для решения какой задачи она будет использована. При оценке информации различают ее синтаксический, семантический и прагматический аспекты.

Передаваемое сообщение должно быть представлено в виде последовательности символов некоторого алфавита. Синтаксический аспект касается формальной правильности сообщения с точки зрения синтаксических правил используемого языка безотносительно к его содержанию.

Семантический аспект передает смысловое содержание информации и соотносит её с ранее имевшейся информацией. Знания об определенной предметной области фиксируются в форме тезауруса, то есть совокупности понятий и связей между ними. При получении информации тезаурус может изменяться. Степень этого изменения характеризует воспринятое количество информации. Семантический аспект определяет возможность достижения поставленной цели с учетом полученной информации, т.е. определяет ценность информации.

Количество информации, содержащейся в некотором сообщении, можно оценить степенью изменения индивидуального тезауруса получателя под воздействием данного сообщения. Иными словами, количество информации, извлекаемой получателем из поступающих сообщений, зависит от степени подготовленности его тезауруса для восприятия такой информации. Если индивидуальный тезаурус получателя сообщения не пересекается с тезаурусом отправителя, то получатель не понимает сообщение и для него количество принятой информации равно нулю. Такая ситуация аналогична прослушиванию сообщения на неизвестном языке. Несомненно, что сообщение не лишено смысла, однако оно непонятно, а значит, не информативно. Если тезаурусы отправителя и получателя совпадают, то количество информации в сообщении также будет равно нулю, поскольку его получатель знает абсолютно всё о предмете. В этом случае сообщение не дает ему ничего нового. Сообщение несет информацию для получателя только в том случае, когда их тезаурусы пересекаются частично.

Человек сначала наблюдает некоторые факты, которые отображаются в виде набора данных. Здесь проявляется синтаксический аспект. Затем после структуризации этих данных формируется знание о наблюдаемых фактах, которое фиксируется на некотором языке. Это семантический аспект информации. Полученное знание и созданные на его основе информационные модели человек использует в своей практике для достижения поставленных целей.

В реальной жизни часто возникает ситуация, когда даже наличие полной информации не позволяет решить поставленную задачу. Прагматический аспект информации проявляется в возможности её практического использования.

Таким образом, не любое сообщение несет информацию. Для того чтобы сообщение несло некоторую информацию, и было полезно получателю, оно должно быть:

  • записано на некотором языке;
  • этот язык должен быть понятен получателю;
  • получатель должен обладать методом извлечения информации из сообщения;
  • сообщение должно снижать степень неопределенности относительно объекта, который интересует получателя;
  • сообщение должно помогать ему решить поставленную задачу;
  • получатель должен обладать реальной практической возможностью использовать полученную информацию.

 

Свойства информации

На свойства информации влияют как свойства данных, так и свойства методов её обработки.

1. Объективность информации. Понятие объективности информации относительно. Более объективной является та информация, в которую методы обработки вносят меньше субъективности. Например, в результате наблюдения фотоснимка природного объекта образуется более объективная информация, чем при наблюдении рисунка того же объекта. В ходе информационного процесса объективность информации всегда понижается.

2. Полнота информации. Полнота информации характеризует достаточность данных для принятия решения. Чем полнее данные, тем шире диапазон используемых методов их обработки и тем проще подобрать метод, вносящий минимум погрешности в информационный процесс.

3. Адекватность информации. Это степень её соответствия реальному состоянию дел. Неадекватная информация может образовываться при создании новой информации на основе неполных или недостоверных данных. Однако полные и достоверные данные могут приводить к созданию неадекватной информации в случае применения к ним неадекватных методов.

4. Доступность информации. Это мера возможности получить информацию. Отсутствие доступа к данным или отсутствие адекватных методов их обработки приводят к тому, что информация оказывается недоступной.

5. Актуальность информации. Это степень соответствия информации текущему моменту времени. Поскольку информационные процессы растянуты во времени, то достоверная и адекватная, но устаревшая информация может приводить к ошибочным решениям. Необходимость поиска или разработки адекватного метода обработки данных может приводить к такой задержке в получении информации, что она становится ненужной.

 

Носители данных

Физический метод регистрации данных может быть любым: механическое перемещение, изменение формы, изменение электрических или магнитных характеристик, изменение химического состава или характера химических связей и др. В соответствии с методом регистрации данные могут храниться и транспортироваться на различных носителях.

Самым распространенным носителем данных является бумага. На бумаге данные регистрируются путем изменения оптических характеристик её поверхности. Изменение оптических свойств поверхности используется также в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием (CD-ROM).

Магнитные ленты и магнитные диски используют изменение магнитных свойств.

Регистрация данных путем изменения химического состава поверхностных веществ используется в фотографии.

Свойства информации тесно связаны со свойствами её носителей. Любой носитель характеризуется следующими параметрами:

1. Разрешающей способностью – количеством данных, записанных в принятой для носителя единице измерения.

2. Динамическим диапазоном – логарифмом отношения интенсивностей максимального и минимального регистрируемых сигналов.

Одной из важнейших задач информатики является задача преобразования данных с целью смены носителя. Стоимость устройств ввода и вывода вычислительных систем, работающих с носителями информации, составляет до половины стоимости аппаратных средств.

 

Операции с данными

Над данными можно выполнять различные операции, состав которых определяется решаемой задачей. Перечисленные ниже операции с данными не зависят от того, кто их выполняет – техническое устройство, компьютер или человек.

1. Сбор данных – накопление данных с целью обеспечения достаточной их полноты для принятия решений.

2. Формализация данных – приведение данных, поступающих из разных источников, к одинаковой форме, что позволяет сделать их сопоставимыми между собой.

3. Фильтрация данных – отсеивание данных, в которых нет необходимости для принятия решений, при этом снижается уровень шума и повышается их достоверность и адекватность.

4. Сортировка данных – упорядочение данных по заданному признаку с целью удобства использования.

5. Защита данных – комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных.

6. Архивация данных – организация хранения данных в удобной и легкодоступной форме, снижающей затраты на хранение и повышающей общую надежность информационного процесса.

7. Транспортировка данных – приём и передача данных между удаленными участниками информационного процесса.

8. Преобразование данных – перевод данных из одной формы в другую. Часто связано с изменением носителя. Например, книги можно хранить в бумажной форме, а можно в электронном виде.

Двоичное кодирование

Для автоматизации работы с данными разных типов важно уметь представлять их в унифицированной форме. Для этого используется кодирование.

Кодирование – это представление данных одного типа через данные другого типа. Естественные языки – это не что иное, как системы кодирования понятий для выражения мыслей с помощью речи. В качестве другого примера можно привести азбуку Морзе для передачи телеграфных сигналов, морскую флажковую азбуку.

В вычислительной технике используется двоичное кодирование, основанное на представлении данных последовательностью из двух символов: 0 и 1. Эти знаки называются двоичными цифрами, по-английски digit или сокращенно bit (бит).

Одним битом можно выразить два понятия: да или нет, черное или белое, истина или ложь, 0 или 1. Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:

Тремя битами можно закодировать 8 понятий:

001 011 100 101 110 111.

Увеличивая на единицу количество разрядов, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе, то есть

N = 2m

где N – количество кодируемых значений;
m – количество двоичных разрядов.

 

Кодирование целых чисел

Любое целое число можно представить в виде разложения в полином с основанием два. Коэффициентами полинома являются числа 0 и 1. Например, число 11 может быть представлено в такой форме:

1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 = 11

Коэффициенты этого полинома образуют двоичную запись числа 11: 1011.

Для преобразования целого числа в двоичный код надо делить его пополам до тех пор, пока в остатке не образуется ноль или единица. Совокупность остатков от каждого деления, записанных справа налево, образует двоичный код десятичного числа.

Для представления целых чисел используется байт, имеющий восемь двоичных разрядов (рис. 2).

Рис. 2. Представление целых чисел.

Первый разряд используется для хранения знака числа. Обычно «+» кодируется нулём, а «–» – единицей. Диапазон представления целых чисел зависит от числа двоичных разрядов. С помощью одного байта могут быть представлены числа в диапазоне от –128 до +127. При использовании двух байтов могут быть представлены числа от –32 768 до +32 767.

 

Организация памяти

Память есть физическая система с большим числом возможных состояний. Практически используемые системы имеют конечное число состояний, то есть множества D и R представляются конечными множествами D' и R'.

Удобно представлять память состоящей из множества одинаковых физических систем, каждая из которых имеет M состояний. Каждая такая физическая система называется словом. Обычно слово проектируют так, чтобы M = 28 = 256. Такой элемент может быть реализован в виде комбинации восьми электронных ключей, каждый из которых может находиться в одном из двух устойчивых состояний – «включено» и «выключено». Это позволяет поставить в соответствие каждой комбинации ключей 8-разрядное двоичное число, то есть байт. Сам элемент памяти обычно тоже называется байтом. Память компьютера может быть представлена как последовательность пронумерованных байтов. Нумерация начинается с нуля. Номер байта называется его адресом.

Байт является наименьшей единицей информации, которая может быть записана в память или считана из памяти с помощью одной операции ввода-вывода. Для измерения более крупных объемов памяти используются килобайт, мегабайт и гигабайт.

1 Кбайт = 210 байтов = 1024 байта

1 Мбайт = 210 килобайтов = 1024 Кбайтов

1 Гбайт = 210мегабайтов = 1024 Мбайтов

Каждое из возможных состояний байта можно интерпретировать в зависимости от ситуации и используемых кодов как:

  • целое натуральное число в диапазоне от 0 до 255;
  • слово из букв обычного алфавита;
  • код команды процессора и т.д.

Отдельные байты могут объединяться в структуры, позволяющие представлять более сложные объекты, такие как вещественные числа, таблицы, списки и т.д.

В качестве единицы хранения данных используется объект переменной длины, называемый файлом. Понятие файла используется в двух смыслах. Логическим файлом называется логически связанная последовательность данных одного типа, имеющая имя. С таким определением файла имеет дело программист, пишущий программу. Физический файл или просто файл – это последовательность произвольного числа байтов памяти, имеющая имя. Адресом файла в памяти является адрес его первого байта. Каждый файл должен иметь уникальное имя. Без этого невозможно гарантировать однозначный доступ к данным.

Обычно в отдельном файле хранятся данные одного типа (целые числа, символы и пр.). Тип данных определяет тип файла. Существуют текстовые файлы, двоичные файлы, графические файлы и т.д. Файл, содержащий готовую к исполнению программу, называется программным.

Память вычислительной машины подразделяется на оперативную (оперативное запоминающее устройство, или ОЗУ) и внешнюю (внешнее запоминающее устройство, или ВЗУ).

Оперативная память служит для временного хран<







ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.