Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Вопрос Производная обратной функции





Пусть - дифференцируемая функция от аргумента x в некотором интервале . Если в уравнении y считать аргументом, а x - функцией, то возникает новая функция , где - функция обратная данной. Для дифференцируемой функции с производной, отличной от нуля, производная обратной функции равна обратной величине производной данной функции, т.е . Дифференцируемая монотонная функция f: ] a, b [ → R с необращающейся в нуль производной имеет обратную дифференцируемую функцию f -1, производная которой вычисляется по формуле

20 вопрос Теорема Ролля. Пусть функция удовлетворяет следующим условиям:

1) непрерывна на отрезке ;

2) дифференцируема на интервале ;

3) на концах отрезка принимает разные значения, т.е. .

4) 4) Тогда внутри отрезка существует по крайней мере одна точка , в которой производная функции равна нулю: .

Геометрический смысл теоремы Ролля. При выполнении условий теоремы внутри отрезка найдется точка , в которой касательная, проведенная к графику функции , параллельна оси (см. рис. 1). Таких точек на интервале может быть и несколько, но теорема утверждает существование по крайней мере одной такой точки.

Замечание. Пусть . Тогда и – нули функции , и между ними найдется такая точка , что . Таким образом, из теоремы Ролля следует, что между нулями дифференцируемой функции находится хотя бы один нуль производной (см. рис. 2).

Теорема Роля является частным случаем теоремы Лагранджа.

Теорема Лагранжа. Пусть функция удовлетворяет следующим условиям:

1) непрерывна на отрезке ;

2) дифференцируема на интервале .

Тогда внутри отрезка существует по крайней мере одна точка , в которой выполняется равенство: .

Это означает, что если на некотором промежутке выполняются условия теоремы, то отношение приращения функции к приращению аргумента на этом отрезке равно значению производной в некоторой промежуточной точке. Геометрический смысл теоремы Лагранжа заключается в том, что при выполнении условий теоремы внутри отрезка найдется точка , в которой касательная, проведенная к графику функции , параллельна хорде AB. Таких точек может быть и несколько, но одна существует точно.

Следствие. При выполнении условий теоремы Лагранжа .

Эту формулу называют формулой конечных приращений.

Теорема Коши́ о среднем значении является обобщением теоремы Лагранжа о конечных приращениях. Пусть на отрезке определены две непрерывные функции . Пусть также существует конечная или бесконечная производная , а функция дифференцируема, то есть Тогда . Полагая , получаем теорему Лагранжа о конечных приращениях.

 

Вопрос

Теорема (правило Лопиталя). Пусть функции f(x) и g(x) дифференцируемы в некоторой окрестности точки a, за исключением, быть может, самой точки a, и пусть или . Тогда, если существует предел отношения производных этих функций , то существует и предел отношения самих функций f(x)/g(x) при xа, причем

(1)

 

Таким образом, коротко правило Лопиталя можно сформулировать следующим образом: предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

Замечание. Отметим, что формула (1) справедлива только в том случае, если предел, стоящий справа, существует. Может случиться, что предел, стоящий слева существует, в то время как предел, стоящий в правой части равенства, не существует.

Например, найти . Этот предел существует . Но отношение производных ( 1 + cos x)/ 1 = 1 + cos x при x →∞ не стремится ни к какому пределу.

Заметим, что если отношение производных опять представляет собой неопределенность вида 0/0 или ∞/∞, то можно снова применить сформулированную теорему, то есть перейти к отношению вторых производных и так далее.

Вспомним, что к этим двум случаям сводятся случаи других неопределенностей: ∞·∞; 0·∞.

Для раскрытия неопределенностей 1, 10, ∞0 нужно прологарифмировать данную функцию и найти предел ее логарифма.

 

22 вопрос Для максимумов и минимумов есть общее название – экстремумы. Соответственно точки максимума и точки минимума называются точками экстремума.

Очевидно, что функция, определенная на отрезке, может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

В точках экстремума у производной есть особые свойства.

Теорема (необходимое условие экстремума). Пусть в точке функция имеет экстремум. Тогда либо не существует, либо .

Доказательство. Предположим, что функция имеет в точке максимум.

Тогда при достаточно малых при любом знаке верно неравенство: , т.е. .

Тогда: и .

По определению производной в точке : (если такой предел существует). Т.е. если , но , то , а если , но , то . Возможно это только в тех случаях, если или если не существует. Теорема доказана.

23 вопрос Функция f (x) называется выпуклой на интервале (a, b), если её график на этом интервале лежит ниже касательной, проведенной к кривой y = f (x) в любой точке (x 0, f (x 0)), x 0 (a, b).

Функция f (x) называется вогнутой на интервале (a, b), если её график на этом интервале лежит выше касательной, проведенной к кривой y = f (x) в любой точке (x 0, f (x 0)), x 0 (a, b).







Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.