Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Многоступенчатый поршневой компрессор .Расчет работы привода компрессора





Цикл с подводом теплоты при постоянном объеме (цикл Отто)

Это цикл бензиновых ДВС с внешним смесеобразованием и принудительным искровым зажигание горючей смеси. Такие ДВС применяют на легковом автотранспорте.

Рабочая и тепловая диаграммы цикла Отто представлены на рис. 6.

Характеристики цикла:

- степень сжатия

- степень повышения давления.

Рис.6. Цикл Отто. Рабочая (p-v) и тепловая (T-s) диаграммы.

(1-2 – адиабатное сжатие, 2-3 – изохорный подвод теплоты,

3-4 – адиабатное расширение, 4-1 – изохорный отвод теплоты)

Параметры состояния рабочего тела в характерных точках цикла определяются аналогично рассмотренному ранее циклу Тринклера.

Подводимая теплота:

Отводимая теплота:.

Работа цикла.

 

Термический КПД цикла:.

Чем больше степень сжатия ε, тем выше эффективность цикла. Увеличение ε в карбюраторных двигателях ограничено наступлением детонации (взрывного сгорания), которая зависит от температуры самовоспламенения горючей смеси и конструктивных особенностей камеры сгорания, поэтому ε = 6~12.

Цикл Дизеля и его исследование.

Цикл с подводом теплоты при постоянном давлении (цикл Дизеля)

Это цикл компрессорных дизелей - ДВС тяжелого топлива (дизельного, солярного и др.) с внутренним смесеобразованием и самовоспламенением горючего от сжатого до высокой температуры воздуха. Горючее распыляется воздухом, подаваемым в цилиндр компрессором. Из-за больших габаритов и веса компрессорные дизели применяются на судах и в качестве стационарных установок электростанций.

Рабочая и тепловая диаграммы цикла Дизеля представлены на рис. 7.

Рис.7. Цикл Дизеля. Рабочая (p-v) и тепловая (T-s) диаграммы.

(1-2 – адиабатное сжатие, 2-3 – изобарный подвод теплоты,

3-4 – адиабатное расширение, 4-1 – изохорный отвод теплоты)

Характеристики цикла:

- степень сжатия

- степень предварительного расширения

Параметры состояния рабочего тела в характерных точках цикла определяются аналогично рассмотренному ранее циклу Тринклера: Подводимая теплота: Отводимая теплота:. Работа цикла Термический КПД цикла:.

Верхний предел ε ограничивается в дизелях быстрым увеличением давления. Применяют значения ε = 14~25. Увеличение ρ отрицательно влияет на повышение эффективности цикла. По мере совершенствования процессов смесеобразования и горения ρ уменьшается

 

Сравнение экономической работы дизеля и карбюраторного двигателя в T-S

Термодинамическая эффективность циклов зависит от условий их осуществления. В одних условиях эффективен один цикл, в других – другой.

1. Сравним циклы Отто и Дизеля по значению термического КПД при одинаковых степенях сжатия.

Для наглядности будем использовать графическую интерпретацию подводимой и отводимой теплоты на тепловой диаграмме (рис. 8): площадь нелинейной трапеции ниже линии процесса численно равна удельной теплоте.

Рис. 8. Сравнение циклов Отто (123'4) и Дизеля (123''4

при одинаковой степени сжатия

При одинаковых степенях сжатия цикл с изохорным подводом теплоты имеет больший КПД, чем цикл с изобарным подводом. Цикл Тринклера будет занимать промежуточное значение.

2. Целесообразнее сравнивать циклы при одинаковых конечных давлениях и температурах (рис.9), т. е. в условиях одинаковых допустимых термических и механических напряжений.

Рис. 9. Сравнение циклов Отто (12'34) и Дизеля (12''3 в одинаковом температурном диапазоне

В этих условиях эффективность цикла с изобарным подводом теплоты выше, чем с изохорным подводом теплоты; эффективность цикла Тринклера окажется средней между ними

 

Цикл Карно

 

Цикл Карно — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Состоит из 2 адиабатических и 2 изотермических процессов.

Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатический изолированной (без теплообмена с окружающей средой) системы не меняется.

Обратимый круговой процесс, в котором совершается превращение теплоты в работу (или работы в теплоту). К. ц. состоит из последовательно чередующихся двух изотермических и двух адиабатных процессов. Превращение теплоты в работу сопровождается переносом рабочим телом двигателя определённого количества теплоты от более нагретого тела (нагревателя) к менее нагретому (холодильнику).

 

2.2 Цикл Карно на диаграмме P- V (давление - объём), T и S (температура и энтропия)

δQ1 — количество теплоты, получаемой рабочим телом от нагревателя,

δQ2 — количество теплоты, отдаваемой им холодильнику. Площадь ABCD численно равна работе цикла Карно.

К. ц. осуществляется следующим образом: рабочее тело (например, пар в цилиндре под поршнем) при температуре T1приводится в соприкосновение с нагревателем, имеющим постоянную температуру T1, и изотермически получает от него количество теплоты δQ1 при этом пар расширяется и совершает работу. Этот процесс изображен отрезком изотермы AB. Затем рабочее тело, расширяясь адиабатически по адиабате BC, охлаждается до температуры T2. При этой температуре, сжимаясь изотермически CD, рабочее тело отдаёт количество теплоты δQ2 холодильнику с температурой T2.Завершается К. ц. адиабатным процессом DA, возвращающим рабочее тело в исходное термодинамическое состояние. При постоянной разности температур (T1 — T2) между нагревателем и холодильником рабочее тело совершает за один К. ц. работу

К. ц. обратим, и его можно осуществить в обратной последовательности (в направлении ADCBA. При этом количество теплоты δQ2 отбирается у холодильника и вместе с затраченной работой δА превращенной в теплоту передаётся нагревателю. Тепловой двигатель работает в этом режиме как идеальная холодильная машина.

К. ц. имеет наивысший кпд η = δA/δQ1 = (T1 — T2)/T1

среди всех возможных циклов, осуществляемых в одном и том же температурном интервале (T1 — T2). В этом смысле кпд К. ц. служит мерой эффективности др. рабочих циклов.

Обратимый цикл Карно, осуществляется в интервале Т1 и Т2 изображается в координатах T и S (температура и энтропия) прямоугольникам 1234.

 

Цикл Карно состоит из четырёх стадий

Изотермическое расширение (на рисунке — процесс 1→2). В начале процесса рабочее тело имеет температуру T1, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты Q1. При этом объём рабочего тела увеличивается.

Адиабатическое (изоэнтропическое) расширение (на рисунке — процесс 2→3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

Изотермическое сжатие (на рисунке — процесс 3→4). Рабочее тело, имеющее к тому времени температуру T2 приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Q2.

Адиабатическое (изоэнтропическое) сжатие (на рисунке — процесс 4→1). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия). Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно.

Аналогично, при изотермическом сжатии рабочее тело отдало холодильнику

 

Отсюда коэффициент полезного действия тепловой машины Карно

Многоступенчатый поршневой компрессор.Расчет работы привода компрессора

Многоступенчатый поршневой компрессор. В многоступенчатых компрессорах сжатие газов осуществляется последовательно в нескольких цилиндрах (до семи) с промежуточным охлаждением после каждого цилиндра в специальных холодильниках. При таком принципе работы сжатие газа в каждом цилиндре возможно при допустимом температурном режиме, обеспечивающем благоприятные условия смазки. В промежуточных холодильниках после каждого цилиндра газ охлаждают при постоянном давлении, равном давлению конечного сжатия в соответствующей ступени.

Рассмотрим в качестве примера работу трехступенчатого поршневого компрессора, схема которого приведена на рис.17.2, а рабочий процесс в pх- и тs- координатах (для идеального компрессора) — на рис.17.3.

Газ всасывается в цилиндр низкого давления (процесс D-1 на рис.17.3), сжимается по политропе 1-2 до давления P2 и нагнетается в промежуточный холодильник x1, где при постоянном давлении P2 охлаждается вследствие отдачи теплоты воде, омывающей змеевик. Из промежуточного холодильника сжатый газ при том же давлении P2 всасывается во вторую ступень. Конечный объем всасывания V3 < V2; так как P2 = Const, а T3 < T2. Во второй ступени газ сжимается по политропе до давления P4 (процесс 3-4), нагнетается при этом давлении во второй промежуточный холодильник х2 и оттуда поступает в третью ступень, где и сжимается до конечного заданного давления P6 (процесс 5-6) и нагнетается в резервуар.

Работу многоступенчатого компрессора стремятся организовать так, чтобы обеспечивались следующие три условия:

1) полное охлаждение газа во всех холодильниках, т.е. температуру газа доводят до начальной температуры Т1, которую он имел при входе в первую ступень (Т1 = Т3 = Т5);

2) одинаковая конечная температура сжатия газа во всех ступенях, обеспечивающая во всех цилиндрах надежные условия смазки (Т2 = Т4 = Т6);

3) одинаковые показатели политроп сжатия во всех цилиндрах, т.е

nI = nII = nIII = n.

При выполнении этих условий перепады давлений (отношение конечного давления к начальному) во всех ступенях одинаковы, т.е. Р2/Р1 = Р4 /Р3 = Р6/Р5.

Для определения общей работы, затрачиваемой на привод многоступенчатого компрессора, необходимо просуммировать работы, затрачиваемые на сжатие газа по отдельным ступеням. Нетрудно показать, что при выполнении трех указанных условий АI0, АII0, АIII0 будут одинаковы.

В соответствии с формулой (17.5) имеем:

АI0 = n/(n – 1)Р1 v1[(Р2/Р1) (n - 1)/n – 1] =

= n/(n – 1)RT1[(Р2/Р1) (n - 1)/n – 1]; (17.6)

АII0 = n/(n – 1)Р3 v3[(Р4/Р3) (n - 1)/n – 1] =

= n/(n – 1)RT3[(Р4/Р3) (n - 1)/n – 1]; (17.7)

АIII0 = n/(n – 1)Р5v5[(Р6/Р5) (n - 1)/n – 1]=

= n/(n – 1)RT5[(Р6/Р5) (n - 1)/n – 1]; (17.8)

Так как правые части уравнений равны, то АI0 = АII0 = АIII0. Тогда теоретическая работа m ступенчатого компрессора, затрачиваемая на сжатие 1 кг газа, будет определяться произведением m•А0.

Теоретическая мощность N0 (Вт), затрачиваемая на привод компрессора, может быть определена по равенству

N0 = M·m•А0, (17.9)

где: M – производительность компрессора, кг/с; А0 – теоретическая работа на сжатие 1 кг газа в одной ступени, Дж/кг; m – число ступеней компрессора.

Для определения действительной (эффективной) мощности Nе, необходимой для привода компрессора, нужно знать потери работы на преодоление сопротивлений клапанов и трубопроводов и на трение в соприкасающихся частях компрессора, которые учитываются механическим КПД:

Nе = N0 / зм = M·m•А0 / зм. (17.10)

 

47.ЦИКЛЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ. Исследование цикла Отто

ЦИКЛЫ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ (ДВС) Назначение любого теплового двигателя – превращение теплоты в работу. Необходимая для перевода в работу теплота получается при сгорании жидких, твердых или газообразных топлив. Топливо может сжигаться вне тепловой машины (паровые машины и турбины) – это так называемые двигатели внешнего сгорания. Двигатели, в которых процесс сгорания осуществляется в рабочем пространстве машины, называются двигателями внутреннего сгорания (ДВС).

Одним из первых указал на возможность создания ДВС Сади Карно в своей работе «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824 г.). В 1860 г. французский механик Ленуар построил первый ДВС, работающий на светильном газе, но без предварительного сжатия рабочего тела. Двигатель имел низкий КПД и не получил широкого распространения.

В 1877 г. немецкий инженер Отто построил бензиновый двигатель, работа которого осуществлялась по принципу, запатентованному французом Бо-де-Роша в 1862 г. В 1897 г. немецкий инженер Дизель разработал двигатель, работающий на керосине, который распылялся в цилиндре воздухом высокого давления от компрессора. В 1904 г. русским инженером Тринклером Г.В. был построен безкомпрессорный двигатель со смешанным сгоранием топлива. Этот двигатель получил самое широкое распространение во всем мире.

 







Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.