Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Принцип биологического накопления





В круговорот веществ в экосистеме часто добавляются вещества, попадающие сюда извне. Они концентрируются в трофических цепях и накапливаются в них, т. е. происходит их биологическое накопление. Это явление наглядно видно на примере концентрирования радионуклидов и пестицидов в трофических цепях.

Наиболее известна способность к биологическому накоплению у ДДТ – вещества, ранее широко применявшегося для борьбы с вредными насекомыми и запрещенного к применению в настоящее время. Ю. Одум (1975) приводит пример того, как недоучет закономерностей биологического накопления, обусловленного экологическими процессами, привел к гибели птиц, питающихся гидробионтами, хотя опыляли комаров на болотах Лонг-Айленда (п-ов Флорида), давая концентрацию ДДТ значительно ниже дозы, смертельной для рыб и других животных. Он объясняет это тем, что ядовитые осадки адсорбировались на детрите, концентрировались в тканях редуцентов (детритофагов) и мелкой рыбы, а дальше – в хищниках, таких как рыбоядные птицы. Благодаря многократному поглощению с начала детритной цепи, яд накапливался в жировых отложениях рыб и птиц. И даже если его доза ниже смертельной и птицы не погибали сами, то ДДТ препятствовал образованию яичной скорлупы: тонкая скорлупа лопалась еще до того, как разовьется птенец. Такие явления могут привести к уничтожению целых популяций хищных птиц, например скопы.

Таким образом, принципы биологического накопления надо учитывать при любых поступлениях загрязнений в среду.

Биологическая продуктивность экосистем

Продуктивность экологической системы – это скорость, с которой продуценты усваивают лучистую энергию в процессе фотосинтеза и хемосинтеза, образуя органическое вещество, которое затем может быть использовано в качестве пищи.

Уровни производства органического вещества

Различают разные уровни продуцирования, на которых создается первичная и вторичная продукция. Органическая масса, создаваемая продуцентами в единицу времени, называется первичной продукцией, а прирост за единицу времени массы консументов –вторичной продукцией.

Первичная продукция подразделяется как бы на два уровня – валовую и чистую продукцию. Валовая первичная продукция – это общая масса валового органического вещества, создаваемая растением в единицу времени при данной скорости фотосинтеза, включая и траты на дыхание.

Растения тратят на дыхание от 40 до 70% валовой продукции. Меньше всего ее тратят планктонные водоросли – около 40% от всей использованной энергии. Та часть валовой продукции, которая не израсходована «на дыхание», называется чистой первичной продукцией: она представляет собой величину прироста растений и именно эта продукция потребляется консументами и редуцентами.

Вторичная продукция не делится уже на валовую и чистую, так как консументы и редуценты, т. е. все гетеротрофы, увеличивают свою массу за счет первичной продукции, т. е. используют ранее созданную продукцию.

Рассчитывают вторичную продукцию отдельно для каждого трофического уровня, так как она формируется за счет энергии, поступающей с предшествующего уровня.

Все живые компоненты экосистемы – продуценты, консументы и редуценты – составляют общую биомассу (живой вес) сообщества в целом или его отдельных частей, тех или иных групп организмов. Биомассу обычно выражают через сырой и сухой вес, но можно выражать и в энергетических единицах – в калориях, джоулях и т. п., что позволяет выявить связь между величиной поступающей энергии и, например, средней биомассой.

На образование биомассы расходуется не вся энергия, но та энергия, которая используется, создает первичную продукцию и может расходоваться в разных экосистемах по-разному. Если скорость ее изъятия консументами отстает от скорости прироста растений, то это ведет к постепенному приросту биомассы продуцентов и возникает избыток мертвого органического вещества. Последнее приводит к заторфовыванию болот, зарастанию мелких водоемов, созданию большого запаса подстилки в таежных лесах и т. п.

В стабильных сообществах практически вся продукция тратится в трофических сетях и биомасса остается постоянной.

Экологические пирамиды

Функциональные взаимосвязи, т. е. трофическую структуру, можно изобразить графически, в виде так называемых экологических пирамид. Основанием пирамиды служит уровень продуцентов, а последующие уровни питания образуют этажи и вершину пирамиды. Известны три основных типа экологических пирамид: 1) пирамида чисел, отражающая численность организмов на каждом уровне (пирамида Элтона); 2) пирамида биомассы, характеризующая массу живого вещества, – общий сухой вес, калорийность и т. д.; 3) пирамида продукции (или энергии), имеющая универсальный характер, показывающая изменение первичной продукции (или энергии) на последовательных трофических уровнях.

Пирамида чисел отображает отчетливую закономерность, обнаруженную Элтоном: количество особей, составляющих последовательный ряд звеньев от продуцентов к консументам, неуклонно уменьшается (рис. 5.6). В основе этой закономерности лежит, во-первых, тот факт, что для уравновешивания массы большого тела необходимо много маленьких тел; во-вторых, от низших трофических уровней к высшим теряется количество энергии (от каждого уровня до предыдущего доходит лишь 10% энергии) и, в-третъих – обратная зависимость метаболизма от размера особей (чем мельче организм, тем интенсивнее обмен веществ, тем выше скорость роста их численности и биомассы).

Однако пирамиды численности будут сильно различаться по форме в разных экосистемах, поэтому численность лучше приводить в табличной форме, а вот – биомассу – в графической. Она четко указывает на количество всего живого вещества на данном трофическом уровне, например, в единицах массы на единицу площади – г/м2 или на объем – г/м3 и т. д.

В наземных экосистемах действует следующее правило пирамиды биомасс: суммарная масса растений превышает массу всех травоядных, а их масса превышает всю биомассу хищников. Это правило соблюдается, и биомасса всей цепочки изменяется с изменениями величины чистой продукции, отношение годового прироста которой к биомассе экосистемы невелико и колеблется в лесах разных географических зон от 2 до 6%. И только в луговых растительных сообществах она может достигать 40–55 %, а в отдельных случаях, в полупустынях – 70–75 %.

На рис. 5.7 показаны пирамиды биомасс некоторых биоценозов. Как видно из рисунка, для океана приведенное выше правило пирамиды биомасс недействительно – она имеет перевернутый (обращенный) вид. Для экосистемы океана характерна тенденция накапливания биомассы на высоких уровнях, у хищников. Хищники живут долго и скорость оборота их генераций мала, но у продуцентов – у фитопланктонных водорослей, оборачиваемость может в сотни раз превышать запас биомассы. Это значит, что их чистая продукция и здесь превышает продукцию, поглощенную консументами, т. е. через уровень продуцентов проходит больше энергии, чем через всех консументов.

Отсюда понятно, что еще более совершенным отражением влияния трофических отношений на экосистему должно быть правило пирамиды продукции (или энергии): на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени (или энергии), больше, чем на последующем. Пирамида продукции отражает законы расходования энергии в трофических цепях. На рис. 5.8 показана пирамида энергий (Ю. Одум, 1986).

В конечном итоге все три правила пирамид отражают энергетические отношения в экосистеме, а пирамида продукции (энергии) имеет универсальный характер.

В природе, в стабильных системах биомасса изменяется незначительно, т. е. природа стремится использовать полностью валовую продукцию. Знание энергетики экосистемы и количественные ее показатели позволяют точно учесть возможность изъятия из природной экосистемы того или иного количества растительной и животной биомасссы без подрыва ее продуктивности.

Человек получает достаточно много продукции от природных систем, тем не менее основным источником пищи для него является сельское хозяйство. Создав агроэкосистемы, человек стремится получить как можно больше чистой продукции растительности, но ему необходимо тратить половину растительной массы на выкармливание травоядных животных, птиц и т. д., значительная часть продукции идет в промышленность и теряется в отбросах, т. е. и здесь теряется около 90% чистой продукции и только около 10% непосредственно используется на потребление человеком.

В природных экосистемах энергетические потоки также изменяются по своей интенсивности и характеру, но этот процесс регулируется действием экологических факторов, что проявляется в динамике экосистемы в целом.

Динамика экосистемы

Экосистема испытывает те же динамические процессы, что и ее популяции и сообщества: цикличность, смену популяций и биоценозов, и др.

Цикличность

Суточная, сезонная и многолетняя периодичность внешних условий и проявление внутренних (эндогенных) ритмов организмов, флуктуации популяций достаточно синхронно отражается в цикличности всего сообщества биоценоза.

Суточные циклы наиболее резко выражены в условиях климата высокой континентальности, где значительная разница между дневными и ночными температурами. Например, в песчаных пустынях Средней Азии в жаркий полдень многие животные прячутся в норы или ведут ночной образ жизни летом, а некоторые – зимой переходят на дневной (змеи, пауки и др.). Однако суточные ритмы наблюдаются во всех географических зонах, и даже в тундре в полярный день растения закрывают и открывают свои цветки в соответствии с этими ритмами.

Сезонная цикличность выражается в том, что на определенный период из биоценоза «выпадают» группы животных и даже целые популяции, впадающие в спячку, в период диапауз или оцепенений, при исчезновении однолетних трав, спаде листвы и т. п. Это в слабой форме выражено даже во влажных тропических лесах.

Многолетняя цикличность проявляется благодаря флуктуациям климата. Многолетняя периодичность в изменении численности биоценоза, вызванная резко неравномерным выпадением осадков по годам, с периодическим повторением засух, хорошо иллюстрируется повторением массовых размножений животных, например саранчевых (налеты саранчи).

Многолетняя цикличность может быть связана с особенностями развития растений – эдификаторов. Например, в буковых лесах сомкнутые кроны многолетних деревьев угнетают растительность нижних ярусов, но, как только бук упадет, начинают бурно расти молодые деревья и крона восстанавливается. Так происходит обновление букового леса, на которое в естественных условиях требуется цикл в 250 лет.

Экологическая сукцессия

Ю. Одум (1986) под экологической сукцессией понимает вообще весь процесс развития экосистемы. Более конкретное определение дает этому явлению Н. Ф. Реймерс (1990): «Сукцессия – последовательная смена биоценозов, приемственно возникающая на одной и той же территории (биотопе) под влиянием природных факторов (в том числе и внутренних противоречий самих биоценозов) или воздействия человека». Изменения в сообществе в результате сукцессии носят закономерный характер и обусловлены взаимодействием организмов между собой и с окружающей абиотической средой.

Экологическая сукцессия происходит в определенный отрезок времени, в который изменяется видовая структура сообщества и абиотическая среда его существования вплоть до кульминации его развития – возникновения стабилизированной системы. Такую стабилизированную экосистему называют климаксом. В этом состоянии система находится тогда, когда в ней на единицу энергии приходится максимальная биомасса и максимальное количество симбиотических связей между организма ми (Ю. Одум, 1975). Однако к этому состоянию система проходит через ряд стадий развития, первые из которых часто называют стадией первых поселенцев. Поэтому, в более узком смысле, сукцессия – это последовательность сообществ, сменяющих друг друга в данном районе.

Стабильность сообщества может быть длительной лишь в том случае, если изменения среды, вызванные одними организмами, точно компенсируются деятельностью других, с противоположными экологическими требованиями. Это условие нарушается при нарушении круговорота веществ и тогда часть популяций, которые не могут выдержать конкуренции, вытесняются другими, для которых эти условия благоприятны, и гомеостаз восстанавливается.

Для возникновения сукцессии необходимо свободное пространство. В зависимости от первоначального состояния субстрата, различают первичную и вторичную сукцессии. Первичная сукцессия – это если формирование сообществ начинается на первоначально свободном субстрате, а вторичная сукцессия – это последовательная смена одного сообщества, существовавшего на данном субстрате, другим, более совершенным для данных абиотических условий.

Первичная сукцессия позволяет проследить формирование сообществ с самого начала. Она может возникнуть на склоне после оползня или обвала, на образовавшейся отмели при отступлении моря и изменении русла рекой, на обнаженных эоловых песках пустыни, не говоря уже об антропогенных нарушениях: свежая лесосека, намывная полоса морского побережья, искусственные водохранилища.

Первыми, как правило, на свободное пространство начинают внедряться растения посредством перенесенных ветром спор и семян, либо за счет вегетативных органов оставшихся по соседству растений. В качестве примера первичной сукцессии обычно приводят зарастание еловым лесом новых территорий на севере нашей страны.

Ельник – это последняя климаксная стадия развития экосистемы в климатических условиях Севера, т. е. уже коренной биоценоз. Вначале же здесь развиваются березняки, ольховники, осинники, под пологом которых растут ели. Постепенно они перерастают березу и вытесняют ее, захватывая пространство (рис. 5.9). Семена обеих древесных пород легко переносятся ветром, но, если даже они прорастут одновременно, береза растет намного быстрее – к 6–10 годам ель едва достигает 50–60 см, а береза – 8–10 м. Под уже сомкнутыми кронами берез возникает уже свой микроклимат, обилие спада листьев способствует формированию особых почв, поселяются многие животные, появляется разнообразный травянистый покров, создаются консорции березы с окружающей средой. А ель продолжает расти в столь благоприятной обстановке и, наконец, береза не выдерживает конкуренции с ней за пространство и свет и вытесняется елью.

Классическим примером природной сукцессии является «старение» озерных экосистем – эвтрофикация. Она выражается в зарастании озер растениями от берегов к центру. Здесь наблюдается ряд стадий зарастания – от начальных – дальние от берега до достигнутых у берега. Эти стадии показаны и описаны на рис. 5.10.

 

В конечном итоге озеро превращается в торфяное болото, представляющее собой устойчивую экосистему климаксного типа. Но и она не вечна – на ее месте постепенно может возникнуть лесная экосистема уже благодаря наемной сукцессионной серии в соответствии с климатическими условиями местности.

Эвтрофикация водоема в значительной степени определяется привносом извне биогенных элементов. В природных условиях биогены сносятся с площади водосбора. Такая эвтрофикация имеет черты первичной прогрессивной сукцессии.

Вторичная сукцессия является, как правило, следствием деятельности человека. В частности, описанная выше смена растительности при формировании ельника чаще происходит в результате вторичной сукцессии, возникающей на вырубках ранее существовавшего леса (ельника). Вторичная сукцессия заканчивается стабильной стадией сообщества через 150–250 лет, а первичная длится 1000 лет.

Вторичная, антропогенная сукцессия проявляется так же и в эвтрофикации. Бурное «цветение» водоемов, особенно искусственных водохранилищ, есть результат их обогащения биогенами, обусловленное деятельностью человека. «Пусковым механизмом» процесса обычно является обильное поступление фосфора, реже – азота, иногда углерода и кремния. Ключевую роль обычно играет фосфор.

При поступлении биогенов резко возрастает продуктивность водоемов за счет роста численности и биомассы водорослей, и прежде всего сине-зеленых – цианей, из царства дробянок. Многие из них могут фиксировать молекулярный азот из атмосферы, тем самым снижая лимитирующее действие азота, а некоторые способны освобождать фосфор из продуктов метаболизма различных водорослей. Обладая этим и рядом других подобных качеств, они захватывают водоем и доминируют в биоценозе.

Биоценоз практически полностью перерождается. Наблюдаются массовые заморы рыб. «В особо тяжелых случаях вода приобретает цвет и консистенцию горохового супа, неприятный гнилостный запах: жизнь аэробных организмов исключена» (Соловьев, 1987).

Последовательный ряд постепенно и закономерно сменяющих друг друга в сукцессии сообществ называется сукцессионной серией. Она наблюдается в природе не только в лесах, болотах и озерах (см. рис. 5.9; 5.10), но и на стволах отмирающих деревьев и в пнях, где происходит закономерная смена сапрофитов и сапрофагов, в лужах и прудах и т. д. Иными словами, сукцессии разномасштабны и иерархичны, так же как и сами экосистемы.

 







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.