Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Значение инженерной геологии для проектирования и строительства промышленно-гражданских сооружений и их эксплуатации





ОГЛАВЛЕНИЕ

 

1. Значение инженерной геологии для проектирования и строительства промышленно-гражданских сооружений и их эксплуатации

2. Описание минералов и горных пород

3. Определение. Классификация грунтов

4. Основные показатели физических свойств грунтов, их единицы измерения

5. Грунтовые отложения, условия образования и строительные свойства

6. Методы определения относительного и абсолютного возраста пород, эры и периоды геологической истории земли.

7. Сущность эндогенных процессов Земли. Схемы нарушения форм залегания пород

8. Сущность экзогенных процессов Земли. Описание процесса (карст, морозное пучение)

9. Виды воды в грунтах. Условия залегания и движении, химический состав и агрессивность по отношению к строительным конструкциям подземных вод. Закон Дарси, коэффициент фильтрации. Трещинные подземные воды

10. Геологические процессы в грунтах, обусловленные воздействием подземных вод

Список литературы


Описание минералов и горных пород

Ортоклаз -(от греч. orthós - прямой и klásis - ломка, раскалывание), породообразующий минерал из группы полевых шпатов, Химический состав K [AlSi3O8]. В качестве примеси содержит Na (до 8% Na2O), реже Ва и в небольших количествах Fe, Са, Rb, Cs и пр. Кристаллизуется в моноклинной системе. Кристаллы призматической формы. Характерны разнообразные двойники адуляр, лунный камень, обыкновенный полевой шпат,санидин (стекловатый полев. шпат), Спайность совершенна, под углом 90° (отсюда и название), чем отличается от микроклина. Цвет светло-розовый, буровато-жёлтый, иногда красный; блеск стеклянный. Твердость по минералогической шкале 6-6,5; плотность 2550-2580 кг/м3. О. - один из важнейших породообразующих минералов магматических горных пород; скопления крупных кристаллов О. характерны для пегматитовых жил. Часто образуется в процессе регионального и контактного метаморфизма. При выветривании ортоклаз превращается в каолин, в калиеву слюду, иногда эпидот. Места залегания Эйфель, Пантеллерия, Монте-Сомма, Албанские горы. Используется в качестве сырья в стекольной и керамической промышленности.

Мергель (нем. Mergel, от лат. marga) -осадочная горная порода смешанного глинисто-карбонатного состава: 50 — 75% карбонат (кальцит, реже доломит), 25 — 50% — нерастворимый остаток (SiO2 + R2O3). В зависимости от состава породообразующих карбонатных минералов мергели делятся на известковые и доломитовые. У обычных мергелей в нерастворимом осадке содержание кремнезема превышает количество полуторных окислов не более чем в 4 раза. Мергели с соотношением SiO2: R2O3> 4 относятся к группе кремнеземистых.

Виды мергелей

Мергель ангитрито-доломитовый — термин, примененный для сильно ангидритоносных доломитовых мергелей и глинистых ангидрито-доломитов, которые по содержанию глинистого вещества соответствуют мергелям.

Мергель гипсовый — мергель, содержащий гипс, рассеянный или образующий желвачки, тонкие пропластки.

Мергель гипсово-доломитовый — то же, что мергель ангидрито-доломитовый, но кальция представлены гипсом, а не ангидритом.

Мергель глинистый — содержит от 50 до 70% (или от 50 до 75%)глинистых частиц.

Мергель доломитовый — глинисто-карбонатная осадочная горная порода, в которой карбонатный породообразующий мергеля представен доломитом, составляющим от 50 до /5% всей породы.

Мергель доломитовый глинистый— доломитовый мергель, содержат от 50 до 75% глинистого вещества.

Мергель известковый — глинисто-карбонатная порода, содержит от 50 до 75%СаСО3.Используется в цементной промышленности.

Мергель мелоподобный — порода, содеращая 10 — 30% глинистого материала и 35 — 90% кальцита, представленного мельчайшими скелетами организмов и микрозернистым кальцитом, тонко перемежающихся с глинистыми частицами. Сравнительно мягкая, растирающаяся, обычно светлоокрашенная горная порода.

Мергель пресноводный — рыхлая, рассыпчатая, порошкообразная масса углекислого кальция, отложенная в водоемах озерно-болотного типа в результате выпадения [[СаСО3]] из раствора, обогащенная глинистой примесью (свыше 30%). Применяется для выжига извести и производства цемента. Синонимы: мергель озерный, мергель торфяной.

Мергель руинный— известковая порода, структура которой напоминает обломочную. В мергеле руинном участки четырехугольной формы, сохраняющие первичный серый цвет породы, окружены пространством, окрашенным окислами железа в красный цвет. Мергель руинный отмечен среди верхнемеловых флишевых отложений Австрии и во флишевых зонах Италии.

Мергель цементный — естественный известковый мергель, пригодный для производства портландцемента; для этого он подвергается обжигу до спекания. Состав колеблется, особенно изменчиво отношение кремнезема к сумме полуторных окислов (Аl2О3 + Fe2O3). Поэтому при приготовлении шихты для цементного клинкера в мергель цементный вводятся известковистая или глинистая добавки. В природе встречаются т. н. натуральные разности мергель цементный (СаСО3 75 — 80%, R2O3 + SiO2 20 — 25%), пригодные для обжига без добавок (например, новороссийская группа месторождений).

Мергель малоустойчив к атмосферным воздействиям. Мергеля широко распространены в природе, встречаются во всех системах, начиная с протерозоя, развиты повсеместно среди карбонатных и глинистых толщ. Используются как сырьё в производстве некоторых видов цемента. Наибольшее значение имеют цементные мергеля-натуралы, содержащие 75-80% CaCO3. Наиболее известны цементные мергелям район: Новороссийска, Амвросиевки (Донецкая область) и с. Подгорного (Воронежская область). Месторождения мергеля разрабатываются открытым способом.

Щебень - рыхлая обломочная порода из неокатанных обломков горных пород, шлаков и т.д. размером от 10 до 100 мм.

1) остроугольные обломки горных пород (размером до 100 мм), образовавшиеся при их выветривании; встречаются в виде рыхлых и слабосцементированных скоплений... 2) Продукты дробления (иногда и рассева) горных пород и искусственных каменных материалов (например, металлургических шлаков, кирпича) в виде кусков обычно угловатой формы размером 5-150 мм, применяемые, в зависимости от их свойств, в качестве заполнителей бетонов, для балластировки ж.-д. путей, в строительстве автомобильных дорог, гидротехнических сооружений и т.п.

Аргиллит (от греч. árgillos - глина и líthos - камень)-твёрдая, камнеподобная глинистая порода, образовавшаяся в результате уплотнения, дегидратации и цементации глин при диагенезе и эпигенезе. По минералогическому и химическому составу аргиллиты очень сходны с глинами, но отличаются от них большей твёрдостью и неспособностью размокать в воде. Сложены в основном глинистыми минералами гидрослюдистого монтмориллонитового и хлоритового типов с примесью частиц кварца, слюды, полевых шпатов. Подобно глинам, аргиллит образуют либо массивные пласты, либо микрослоистые (плитчатые) разновидности. Аргиллиты - типичные осадочные породы, характерные для геосинклинальных складчатых областей, а также глубоко погруженных осадочных толщ платформ.

 

РАЗНОВИДНОСТИ ГРУНТОВ

Класс природных скальных грунтов — грунты с жесткими структурными связями (кристаллизационными и цементационны­ми)

Класс природных дисперсных грунтов — грунты с водноколлоидными и механическими структурными

Класс природных мерзлых грунтов — грунты с криогенными структурными связями

Класс техногенных (скальных, дисперсных и мерзлых) грун­тов — грунты с различными структурными связями, образованны­ми в результате деятельности человека

Грунт скальный — грунт, состоящий из кристаллитов одного или нескольких мине­ралов, имеющих жесткие структурные связи кристаллизационного типа.

Грунт полускальный — грунт, состоящий из одного или нескольких минералов, имеющих жесткие структурный связи цементационного типа.

Условная граница между скальными и полускальными грунтами принимается по прочности на одноосное сжатие (Rc ³ 5 МПа — скальные грунты, Rc < 5 МПа — полускальные грунты).

Грунт дисперсный — грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или эоловым путем и их отложения.

Грунт глинистый — связный минеральный грунт, обладающий числом пластичности Ip ³ 1.

Песок — несвязный минеральный грунт, в котором масса частиц размером меньше 2 мм составляет более 50 % (Ip = 0).

Грунт крупнообломочный — несвязный минеральный грунт, в котором масса частиц размером крупнее 2 мм составляет более 50 %.

Ил — водонасыщенный современный осадок преимущественно морских аквато­рий, содержащий органическое вещество в виде растительных остатков и гумуса. Обычно верхние слои ила имеют коэффициент пористости е ³ 0,9, текучую консистенцию IL > 1, содержание частиц меньше 0,01 мм составляет 30—50 % по массе.

Сапропель — пресноводный ил, образовавшийся на дне застойных водоемов из продуктов распада растительных и животных организмов и содержащий более 10 % (по массе) органического вещества в виде гумуса и растительных остатков. Сапропель имеет коэффициент пористости е > 3, как правило, текучую консистенцию IL > 1, высо­кую дисперсность — содержание частиц крупнее 0,25 мм обычно не превышает 5 % по массе.

Торф — органический грунт, образовавшийся в результате естественного отмира­ния и неполного разложения болотных растений в условиях повышенной влажности при недостатке кислорода и содержащий 50 % (по массе) и более органических ве­ществ.

Грунт заторфованный — песок и глинистый грунт, содержащий в своем составе в сухой навеске от 10 до 50% (по массе) торфа.

Почва — поверхностный плодородный слой дисперсного грунта, образованный под влиянием биогенного и атмосферного факторов.

Грунт просадочный — грунт, который под действием внешней нагрузки и собствен­ного веса или только от собственного веса при замачивании водой или другой жид­костью претерпевает вертикальную деформацию (просадку) и имеет относительную деформацию просадки e sl ³ 0,01.

Грунт пучинистый — дисперсный грунт, который при переходе из талого в мерзлое состояние увеличивается в объеме вследствие образования кристаллов льда и имеет относительную деформацию морозного пучения e fn ³ 0,01.

Грунт многолетнемерзлый (синоним — грунт вечномерзлый) — грунт, находящийся в мерзлом состоянии постоянно в течение трех и более лет.

Грунт сезонномерзлый — грунт, находящийся в мерзлом состоянии периодически в течение холодного сезона.

Грунт морозный — скальный грунт, имеющий отрицательную температуру и не содержащий в своем составе лед и незамерзшую воду.

Грунт сыпучемерзлый (синоним — «сухая мерзлота») — крупнообломочный и пес­чаный грунт, имеющий отрицательную температуру, но не сцементированный льдом и не обладающий силами сцепления.

Грунт охлажденный — засаленный крупнообломочный, песчаный и глинистый грунты, отрицательная температура которых выше температуры начала их замерзания.

Грунт твердомерзлый — дисперсный грунт, прочно сцементированный льдом, ха­рактеризуемый относительно хрупким разрушением и практически несжимаемый под внешней нагрузкой.

Грунт пластичномерзлый —дисперсный грунт, сцементированный льдом, но обла­дающий вязкими свойствами и сжимаемостью под внешней нагрузкой.

Криогенные структурные связи грунта — кристаллизационные связи, возникающие во влажных дисперсных и трещиноватых скальных грунтах при отрицательной темпе­ратуре в результате сцементирования льдом.

Лед (синоним — грунт ледяной) — природное образование, состоящее из кристал­лов льда с возможными примесями обломочного материала и Техногенные грунты — естественные грунты, измененные и перемещенные в ре­зультате производственной и хозяйственной деятельности человека, и антропогенные образования.

Антропогенные образования — твердые отходы производственной и хозяйственной деятельности человека, в результате которой произошло коренное изменение состава, структуры и текстуры природного минерального или органического сырья.

Природные перемещенные образования — природные грунты, перемещенные с мест их естественного залегания, подвергнутые частично производственной переработке в процессе их перемещения.

Природные образования, измененные в условиях естественного залегания, — приро­дные грунты, для которых средние значения показателей химического состава измене­ны не менее чем на 15 %.

Грунты, измененные физическим воздействием, — природные грунты, в которых техногенное воздействие (уплотнение, замораживание, тепловое воздействие и т. д.) изменяет строение и фазовый состав.

Грунты, измененные химико-физическим воздействием, — природные грунты, в которых техногенное воздействие изменяет их вещественный состав, структуру и тек­стуру.

Насыпные грунты — техногенные грунты, перемещение и укладка которых осу­ществляются с использованием транспортных средств, взрыва.

Намывные грунты — техногенные грунты, перемещение и укладка которых осу­ществляются с помощью средств гидромеханизации.

Бытовые отходы — твердые отходы, образованные в результате бытовой деятель­ности человека.

Промышленные отходы — твердые отходы производства, полученные в результате химических и термических преобразований материалов природного происхождения.

Шлаки — продукты химических и термических преобразований горных пород, образующиеся при сжигании.

Шламы — высокодисперсные материалы, образующиеся в горнообогатительном, химическом и некоторых других видах производства. Золы — продукт сжигания твердого топлива.

Золошлаки — продукты комплексного термического преобразования горных по­род и сжигания твердого топлива.

 

Виды воды в грунтах. Условия залегания и движении, химический состав и агрессивность по отношению к строительным конструкциям подземных вод. Закон Дарси, коэффициент фильтрации. Трещинные подземные воды

Грунтовые воды -подземные воды, залегающие на первом от поверхности земли водоупоре и представляющие собой постоянный во времени и значительный по площади распространения водоносный горизонт.

Гигроскопическая вода – вода, поглощаемая сухим почво-грунтом из воздуха.

Гравитационная вода - подземная вода, способная передвигаться по порам, трещинам и другим пустотам горных пород под влиянием силы тяжести.

Прочносвязанная вода – вода, содержащаяся в грунтах в форме пленки толщиной в 2-3 молекулы воды. Удерживается силами электромолекулярного притяжения. По своим свойствам близка к твердому телу, имеет высокую плотность.

Капиллярные воды - воды, удерживаемые в порах грунта под влиянием капиллярных (менисковых) сил.

Химический состав подземных вод. Подземные воды всегда содержат растворённые газы и соли. Образуясь за счёт атмосферных осадков, они заносят с поверхности Земли растворённые в них кислород, азот, углекислоту. Проходя через почву и горные породы, содержащие органическое вещество, они обогащаются сероводородом, метаном и др. углеводородами. Циркулируя по трещинам горных пород, воды обогащаются карбонатами, сульфатами, хлоридами, а также и трудно растворимыми веществами: кремнезёмом, окислами железа и др. Грунтовые воды сильнее зависят от климата, чем межпластовые. В областях с влажным климатом грунтовые воды обычно пресные или слабо минерализованные. В засушливых областях с замедленной циркуляцией вод они обычно сильнее минерализованы, вплоть до солёных, в которых наряду с карбонатами содержатся сульфаты Na, K, Ca, а также хлористые соли.

Характер минерализации подземных вод сильно зависит от состава пород, по которым они циркулируют. Состав растворимых в воде веществ часто определяет её лечебные свойства. В местах выхода подземных вод с лечебными свойствами, так называемых бальнеологических вод, создаются курорты.

Агрессивная вода - вода, разрушающая бетон, металлы и горные породы. Различают углекислотный выщелачивающий, общекислотный, сульфатный, магнезиальный и кислородный виды агрессивности.

Основной закон фильтрации.

Движение воды в порах горной породы математически выражается следующим образом:

Q=KJW

где Q - расход воды, м3/сут.; К - коэффициент фильтрации м/сут; J - напорный градиент (равен tg угла наклона фунтового потока); W - поперечное сечение фильтрующей породы, м2.

Это выражение сформулировано в 1856 г. французским инженером и по имени автора получило название закона Дарси. Выведено это выражение для пород с ламинарным (параллельно, струйчатым, без пульсации) характером движения подземных вод, которое имеет место в песках, песчаниках и других породах. Позднее Н.Н. Павловским, Т.Н. Каменским и Н.К. Гиринским доказана правомерность этого закона и для гравелистых пород, где скорости достигают 125 м/сут.

Скорость фильтрации из выражения Дарси составляет

Эту скорость фильтрации называют кажущейся, поскольку расход потока отнесен ко всей площади поперечного сечения фильтрующей породы. Если принять напорный градиент за единицу, то коэффициент фильтрации можно рассматривать как кажущуюся скорость движения воды.

Действительную скорость (Vq) представляет собой отношение расхода воды к той части поперечного сечения, которая занята порами:

В глинистых породах, где много физически влаги, не участвующей в гравитационном движении воды и заполняющей поры, различают активную пористость (Пакт), показывающую какая часть сечения породы способна пропускать движущуюся воду

Где WММВ - максимальная молекулярная влагоёмкость в долях единицы; y ск - объемный вес скелета породы.

Трещинные подземные воды- подземные воды циркулирующие в трещинах скальных грунтов. Они перемещаются по трещинам разного происхождения: тектоническим разломам, трещинам отдельных магматических массивов, трещинам выветривания и образуют единую гидравлическую систему, напоминающую систему сообщающихся сосудов.

 

Схема залегания трещинных вод:

1-трещинноватые породы зоны выветривания;2-трещинно-грунтовые воды;3-уровень трещинно-грунтовых вод;4-нижняя граница зоны выветривания;5-монолитные породы;6-тектонические разломы с трещинно-жильными напорными водами; H- напор трещинных вод над кровлей тоннеля; С- скважины

В верхней зоне массивов скальных грунтов до глубины 100м. развиты трещинно-грунтовые воды. Они пополняются за счет инфильтрации атмосферных осадков. Водообильность их определяется интенсивностью пополнения и степенью трещиннватости горных пород. Скальные грунты долины рек тектонического происхождения более водообильные, чем грунты, слагающие водоразделы. При вскрытии трещинно-грунтовых вод горной выработки с поверхности они ведут себя как обычные не напорные грунтовые воды.

Ниже по разрезу в зонах глубоких тектонических разломов залегают трещинно-жильные воды. Это линейно вытянутые водные потоки, уходящие в глубину до нескольких сот метров. Питаются они за счет просачивания трещинно-грунтовых вод, т.е. также за счет инфильтрации атмосферных осадков.

Разновидностью трещинно-жильные воды являются карстовые воды, циркулирующие по трещинам и пещерам карстового происхождения. Карстовые воды перемещаются в виде речных потоков по системе сообщающихся пещер или заполняются изолированные подземные полости и создают большие запасы. Питание карстовых вод происходит также за счет инфильтрации атмосферных осадков или за счет просачивания воды из поверхности рек.

В горно-складчатых областях в зонах тектонических разломов и в карстовых пещерах трещинно-жильные и карстовые воды сосредоточены в виде гигантских объемов и обладают повышенным напором. При строительстве подземных транспортных сооружений зачастую происходят внезапные водообильные прорывы трещинно-жильные вод, что в значительной степени осложняет строительство.

Химический состав как трещинно-жильных, так и карстовых вод определяется составом вмещающих их горных пород. В зоне интенсивного водообмена трещинно-жильные обычно пресные, гидрокарбонатные в (известняках) или жесткие сульфатные (в гипсах)

 

Список литературы

1. Черноусов С.И. Основы инженерной геологии для транспортных строителей Новосибирск ИЗД-во СГУПСа 2007 212с.

2. Черноусов С.И.,Крицкий М.Я., Сухорукова А.Ф. Инженерноя геология Западно-Сибирской железной дороги.

Новосибирск ИЗД-во СГУПСа 2005 144с.

3. Черноусов С.И. Инженерная геология

Новосибирск ИЗД-во СГУПСа 1999 75с.

4. Черноусов С.И. Инженерная геология учебно-методические материалы

Новосибирск ИЗД-во СГУПСа 2004 21с.

5. Web-сайты

ОГЛАВЛЕНИЕ

 

1. Значение инженерной геологии для проектирования и строительства промышленно-гражданских сооружений и их эксплуатации

2. Описание минералов и горных пород

3. Определение. Классификация грунтов

4. Основные показатели физических свойств грунтов, их единицы измерения

5. Грунтовые отложения, условия образования и строительные свойства

6. Методы определения относительного и абсолютного возраста пород, эры и периоды геологической истории земли.

7. Сущность эндогенных процессов Земли. Схемы нарушения форм залегания пород

8. Сущность экзогенных процессов Земли. Описание процесса (карст, морозное пучение)

9. Виды воды в грунтах. Условия залегания и движении, химический состав и агрессивность по отношению к строительным конструкциям подземных вод. Закон Дарси, коэффициент фильтрации. Трещинные подземные воды

10. Геологические процессы в грунтах, обусловленные воздействием подземных вод

Список литературы


Значение инженерной геологии для проектирования и строительства промышленно-гражданских сооружений и их эксплуатации

ИНЖЕНЕРНАЯ ГЕОЛОГИЯ, - отрасль геологии, изучающая верхние горизонты земной коры и динамику последней в связи с инженерно-строительной деятельностью человека. Рассматривает состав, структуру, текстуру и свойства горных пород как грунтов; разрабатывает прогнозы тех. процессов и явлений, возникающих при взаимодействии сооружений с природной обстановкой, и пути возможного воздействия на процессы с целью устранения их вредного влияния.

Инженерная геология зародилась в 19 в. В России первые инженерно-геологические работы были связаны со строительством железных. дорог (1842-1914). В них принимали участие А. П. Карпинский, Ф. Ю. Левинсон-Лес-синг, И. В. Мушкетов, А. П. Павлов, В. А. Обручев и др. Как наука И. г. оформилась в СССР к концу 1930-х гг. в результате исследований, связанных главным образом с гидротехническим строительством. В её развитии большая роль принадлежит Ф. П. Саваренскому, И. В. Попову, Н. Н. Маслову, В. А. Приклонскому, М. П. Семёнову и др.

Сколь велико значение инженерно-геологических изысканий для строительства любого по величине и значимости сооружения, проектировщикам и строителям известно не понаслышке. дороже становится дом, возведенный на недостаточно исследованном участке. Ведь под зданием могут оказаться подземные воды, торф, просадочные грунты В результате - “кривые” стены, трещины, сырость и плесень в подвалах и прочее, что приносит определенные сложности при эксплуатации зданий. Вода способствует растворяемости различных химических соединений, в том числе и агрессивных, что приводит к неблагоприятному воздействию на цементный раствор, каменную кладку, бетон. И хотя процесс разрушения фундамента незаметен, его последствия ощутимо сказываются на здании: нарушается целостность несущих конструкций, плесень и грибок проникают через подвал на верхние этажи и “заражают” в конце концов весь дом. Дверные коробки и оконные рамы деформируются, что становится причиной появления щелей и зазоров, через которые дом начинает ускоренно терять тепло. Паркет или любое другое напольное покрытие под воздействием сырости коробится. Ремонт становится неотвратимым. А он влечет новые затраты, причем без гарантии, что восстановительные процессы не придется повторять снова и снова. И в этом вины строителей как таковых нет, первопричины кроются в некачественной или несвоевременной оценке инженерно-геологических условий стройплощадки

ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯИ для строительства обеспечивают комплексное изучение природных и техногенных условий территории (региона, района, площадки, участка, трассы) объектов строительства, составление прогнозов взаимодействия этих объектов с окружающей средой, обоснование их инженерной защиты и безопасных условий жизни населения. На основе материалов инженерных изысканий для строительства осуществляется разработка предпроектной документации, в том числе градостроительной документации и обоснований инвестиций в строительство, проектов и рабочей документации строительства предприятий, зданий и сооружений, включая расширение, реконструкцию, техническое перевооружение, эксплуатацию и ликвидацию объектов, ведение государственных кадастров и информационных систем поселений, а также рекомендаций для принятия экономически, технически, социально и экологически обоснованных проектных решений.

ТОПОГРАФО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ Наличие материалов инженерно-геологических и геодезических изысканий на площадке проектируемого дома позволяет избежать многих ошибок проектирования, строения и прокладки наружных инженерных систем: правильно расположить все строения на отведенном участке, вспомогательные помещения внутри коттеджа, которые требуют подачи воды и отвода хозфекальных стоков, организовать отвод поверхностных вод с учетом рельефа местности.

При обустройстве автономного источника водоснабжения (колодец или скважина) и местных очистных сооружений без инженерно-геодезических и гидрогеологических изысканий просто нельзя обойтись. Изыскания проводят для определения несущих характеристик грунтов, состава и уровня грунтовых вод. Характер грунта на участке диктует конструктивное устройство фундамента, возможность устройства подвала, способ прокладки коммуникаций, тип очистных сооружений и в целом влияет на экономичность строительства.

Геологические работы включают:

· - бурение;

· - отбор проб грунта и воды (на постройку здания – от 2 до 6 скважин различной глубины в зависимости от габаритов здания и состава грунтов);

· - лабораторные испытания;

· - составление отчета с рекомендациями по типу фундаментов, способам прокладки коммуникаций и мероприятиям по их защите.

При исследовании грунта учитываются следующие основные показатели:

- пучинистость, то ест сила, с которой грунт при воздействии отрицательных температур будет выталкивать из себя фундамент, трубы и заглубленные очистные сооружения. На основе полученных данных прогнозируют допустимую деформацию инженерных сооружений и, соответственно, выбирают материалы, способы строительства и обустройства систем;

- водонасыщенность, то есть уровень грунтовых вод. Знание этого показателя помогает, во-первых, определить глубину будущего колодца или частной скважины и, во-вторых, позволяет прогнозировать устойчивость строения и проложенных коммуникаций;

- агрессивность высокостоящих грунтовых вод: в случае высокой концентрации некоторых химических соединений приходится использовать специальные марки бетона и думать о специальной защите труб и кабелей.

неразумно строить или реконструировать сооружение, не зная точно геологического строения участка (на каких грунтах будет монтироваться фундамент, физико-механических характеристик и несущей способности грунтов под нагрузкой, их коррозионной активности, режима подземных вод и т.д. и т.п.), а следовательно - какую выбрать конструкцию и глубину заложения фундамента. Одни и те же грунты ведут себя по разному в результате обводнения или промерзания, серьезно меняют свои прочностные характеристики в результате разрушения их природной структуры и влажности.

Строительные нормы и правила устанавливают основные положения по определению опасных природных воздействий, вызывающих проявления и (или) активизацию природных процессов, учитываемых при разработке предпроектной документации (обосновании инвестиций в строительство объектов, схем и проектов районной планировки, генеральных планов городов, поселков и сельских поселений и другой документации), технико-экономических обоснований и рабочей документации на строительство зданий и сооружений, а также схем (проектов) их инженерной защиты.

В настоящих нормах и правилах использованы ссылки на следующие нормативные документы:

СНиП 10-01-94 “Система нормативных документов в строительстве. Основные положения”.

СНиП 11-01-95 “Инструкция о порядке разработки, согласования, утверждения и составе проектной документации на строительство предприятий, зданий и сооружений.”

СНиП 1.02.07-87 “Инженерные изыскания для строительства”.

СНиП 2.01.01-82 “Строительная климатология и геофизика”.

СНиП 2.01.15-90 Инженерная защита территорий, зданий и сооружений от опасных геологических процессов. Основные положения проектирования”.

СНиП 2.06.15-85 “Инженерная защита территорий от затопления и подтопления”.

СНиП II-7-81* Строительство в сейсмических районах”.

При проектировании, строительстве и эксплуатации зданий и сооружений, а также при проектировании их инженерной защиты необходимо выявлять геофизические воздействия, вызывающие проявления и (или) активизацию опасных природных (геологических, гидрометеорологических и др.) процессов.

Оценка опасности возникновения геофизических воздействий в литосфере, гидросфере и атмосфере должна проводиться на основе использования опубликованных и фондовых данных о состоянии природной среды, материалов комплексных инженерных изысканий, включающих прогноз взаимодействия проектируемых объектов с окружающей средой, и исходных данных для разработки предпроектной и проектной документации в соответствии с требованиями СНиП 11-01--95, СНиП II-7-81* и СНиП 2.0.01-82.

При выявлении опасных геофизических воздействий и их влияния на строительство зданий и сооружений следует учитывать категории оценки сложности природных условий.

Для прогноза опасных природных воздействий следует применять структурно-геоморфологические, геологические, геофизические, сейсмологические, инженерно-геологические и гидрогеологические, инженерно-экологические, инженерно-геодезические методы исследования, а также их комплексирование с учетом сложности природной и природнотехногенной обстановки территории

 

Уже на стадии выбора строительной площадки необходимы самые детальные изыскания. ведь только на основе полной картины геологического строения площадки и физико-механических свойств грунтов можно возвести объект без перерасхода бетона и гидроизоляционных материалов, качественно рассчитать конструкцию фундамента и гидроизоляции с учетом всех негативных факторов, способствуя тем самым сокращению сроков и стоимости строительства. Но никак не наоборот — сэкономив на инженерно-геологических изысканиях, требовать от проектировщиков удешевления стоимости строительства.

Недостаточное изучение инженерно-геологических условий, а иногда игнорирование их при проектировании и строительстве нередко приводят к еще более грозным последствиям — авариям и разрушению сооружений. То, что они должны предшествовать проектным работам, — аксиома. Только тогда заказчик может быть уверен в том, что построенное здание окажется жестким, недеформируемым и неподтопляемым.

 







ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.