Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Риc. 1, Зональное строение Земли и физические свойства вещества зон.





1 — плотность и давление; 2 — скорость распространения сейсмических волн (Vt — скорость поперечной волны, V1 — скорость продольной волны) и температура; 3 — сектор Земли.

 

Химическое и геохимическое своеобразие земной коры обусловливает предпочтительное образование тех или иных соединений. Частота вхождения химических элементов в состав минералов в целом соответствует их распространенности в земной коре.

Многообразие строения и размеров атомов (атом­ный радиус, катионный и анионный радиусы при раз­ной валентности элементов) обусловливает многочис­ленность минеральных видов.

Мир минералов литосферы и атмосферы системати­зирован в химическом отношении и расчленен на осно­вании данных о тонкой атомной структуре на более дробные подразделения. В 1965 г. X. Штрунц разделил минералы на кристаллохимической основе на восемь классов.

I класс: элементы (а также природные сплавы, кар­биды, нитриды, фосфиды), например серебро, золото, ртуть, мышьяк, сурьма, висмут, графит, алмаз, сера, селен, теллур и др.

II класс: сульфиды (а также селениды, теллуриды, арсениды, антимониды, бисмутиды), например пентландит, сфалерит, халькопирит, галенит, ковеллин, пирит, молибденит, прустит, борнит, реальгар, аурипегмент и др.

 

ВАЖНЕЙШИЕ ЭЛЕМЕНТЫ ЗЕМНОЙ КОРЫ

Элемент Мас., % Число известных минералов
Кислород, О 49,13  
Кремний, Si 26,00  
Алюминий, AI 7,45  
Натрий, Na 2,40  
Магний, Mg 2,35  
Кальций, Са 3,25  
Железо, Fe 4,20  
Калий, К 2,35  
Водород, Н 1,00  
Углерод, С 0,35  
Титан, Ti 0,61  
Хлор, С1 0,20  
Фтор, F 0,08  

 

III класс: галогениды, например галит, сильвин, кар­наллит, криолит и др.

IV класс: окислы, гидроокислы, например лед, куп­рит, шпинель, магнетит, хромит, гематит, корунд, кварц, ильменит, вольфрамит1, гидраргиллит, диаспор, гётит и др. [Вольфрамит чаще описывается вместе с другими вольфрама-тами, т. е. в VI классе.]

V класс: нитраты, карбонаты, бораты, например ка­лиевая селитра, кальцит, магнезит, сидерит, доломит, арагонит, церуссит, азурит, малахит, людвигит, борацит и др.

VI класс: сульфаты (а также теллураты, хроматы, молибдаты, вольфраматы), например ангидрит, гипс, барит, кизерит, полигалит, каинит, крокоит, вульфенит.

VII класс: фосфаты, арсенаты, ванадаты, например монацит, лазулит, вивианит, вавеллит, бирюза, апатит и др.

VIII класс: силикаты, например силикаты с изолиро­ванными тетраэдрами [SiO4]4~ (незосиликаты, ортоси-ликаты)—оливин, топаз, дистен, андалузит, силлима­нит, ставролит, гранат, аксинит и др.; с изолированными группами [Si2O7]e~ (соросиликаты)—эпидот, цоизит; с кольцевыми анионными радикалами (циклосиликаты) — берилл, кордиерит, турмалин и др.; с бесконечными цепочками тетраэдров [SiO4]4~ (шюсиликаты)—пи-роксены, амфиболы, родонит и др.; с бесконечными слоями тетраэдров [SiO4]4~ (филлосиликаты)—тальк, мусковит, биотит, циннвальдит, хлориты, каолинит и др.; с бесконечными трехмерными каркасами тетраэд­ров [(SiAl)O4] (тектооиликаты) —полевые шпаты, лей­цит, анальцим, нефелин, цеолиты и др.

Каждый минерал имеет определенный химический состав, находящий свое выражение в химической фор­муле. Последняя содержит в виде сокращенных симво­лов названия входящих в состав соединения элементов, таких, как железо (Fe), марганец (Мп), никель (Ni), сера (S), кремний (Si), кислород (О), водород (Н), уг­лерод (С), кальций (Са), натрий (Na), хлор (С1) и т. д.

 

Рис. 2. Диаграмма, на которой показано распространение важнейших элементов в земной коре (литосфера-т-гидросфера+ + атмосфера) (в мае. %).

 

По обеим сторонам диаграммы показано содержание «ажнейших металле* (черные столбики).

 

Структурная формула отражает строение минерала. Соединение NaCl (каменная соль) состоит из одного атома натрия и одного атома хлора. При этом 23 массо­вые части натрия связаны с 25 массовыми частями хло­ра. Пирит, FeS2, состоит из одного атома железа и двух атомов серы, т. е. в нем 56 массовых частей железа свя­заны с (32-2) массовыми частями серы.

Вычисление содержаний тех или иных компонентов в минералах часто производится в массовых процентах. Для наглядности приведем простой пример. Минерал сидерит (железный шпат), FeCO2, имеет следующий состав:

 

 

Элемент Атомная масса Содержание железа
Железо, Fe 55,85 55,85:15,86 =
Углерод, С Кислород, Оз 12,01 48,00 = 48,2 мас.% Fe
115,86

Чтобы в более наглядной форме представить хими­ческие взаимоотношения в минералах сложного состава, формулы в минералогии записывают несколько иначе. Калиевый полевой шпат (ортоклаз) имеет, например, химическую (структурную) формулу KAlSi3O8; если же выразить состав этого минерала в виде окислов, то его формула примет вид К2О-Аl2О3-6SiO2. Минерал состо­ит из

 

64,8 мас. % SiO2 (двуокись кремния),
18,3 мас. % А1203 (окись алюминия),
16,9 мас. % КаО (окись калия).

ОБРАЗОВАНИЕ

И ОБЛИК МИНЕРАЛОВ

И КРИСТАЛЛОВ

 

Изучение облика минералов, т. е кристалломорфо-логия, составляет один из существенных разделов мине­ралогии. Минералогам, петрографам и исследователям месторождений, словом, каждому, кто занят изучением минерального мира, кристаллография — учение о кри­сталлах— необходима для диагностики минералов и их агрегатов. Подчас минералы встречаются в природе в виде правильных кристаллов, выросших в пустотах, но гораздо чаще в виде сплошных зернистых или плотных образований (рис. 3). Минералы, кристаллизовавшиеся в условиях земной коры, образованы по определенным законам. Их кристаллографическая форма зависит от химического состава, а также от физических условий образования — давления и температуры.

По своим размерам природные кристаллы могут быть самыми разными: от микроскопических до весьма крупных вплоть до нескольких метров длиной и в попе­речном сечении. Внешний облик кристаллов зависит от того, насколько спокойно происходил их рост. Большин­ство кристаллов в природе растут медленно — тысячи и миллионы лет. Однако некоторые кристаллы растут очень быстро, например кристаллы легко растворимых солей, иногда сублимационных минералов (сера, таблич­ки гематита) в кратерах действующих вулканов.

Вообще говоря, кристаллы образуются в тех случаях, когда какое-либо вещество переходит из жидкого или газообразного состояния в твердое. Рост кристалла на­чинается с образования зародышей и скелетных форм. При длительном, равномерном, беспрепятственном по­ступлении вещества со всех сторон возникают нормаль­ные кристаллические формы, что, однако, едва ли является правилом. В большинстве случаев кристаллы стеснены в своем росте соседними телами (соседними кристаллами). Это приводит к образованию несовершен­ных кристаллов с искаженными гранями, так как по­ступление растворов, питающих кристалл, происходит с разных сторон неравномерно.

Признаками хорошо образованных форм монокри­сталла являются ровные, блестящие грани, отсутствие входящих углов (только двойниковые сростки имеют разнообразные входящие углы). Часто грани кристал­лов бывают шероховатыми, с притупленными ребрами, а сами ребра закругленными. Подобные особенности следует относить за счет процессов растворения, когда на кристалл воздействовали активные растворы.

Многочисленные физические и химические свойства выкристаллизовавшихся минералов, такие, например, как характер роста кристаллов, форма кристаллов, твер­дость, спайность, растворимость и т. д., зависят от хи­мического состава кристаллов, от их упорядоченного атомного или молекулярного строения. Изучением этих вопросов заняты специалисты одного из наиболее важ­ных направлений исследований в кристаллографии. На­пример, кристалл каменной соли — хлорида натрия (NaCl), состоит из атомов натрия и хлора. По углам ку­бической элементарной ячейки NaCl располагаются, чередуясь, атомы натрия и хлора (табл. 1). Эти «кирпи­чики» расположены в пространстве закономерно. В це­лом подобная конструкция называется кристаллической решеткой. Каменная соль образует кубические кристал­лы и спайные выколки по кубу именно вследствие своей характерной структуры.

В соответствии с химическим и кристаллографиче­ским многообразием в минеральном мире существует некоторое количество структурных типов кристалличе­ских решеток, иногда построенных просто, но чаще имеющих весьма сложное строение. Исследования атом­ного строения кристаллических решеток, успешно про­водимые с помощью рентгенографии, включают изуче­ние химии минералов и некоторых аспектов атомной физики.

Можно привести следующие примеры отдельных ти­пов кристаллических структур: кубическая гранецентрированная решетка самородной меди, построенная из атомов меди, кубическая решетка галита (каменной соли), построенная из как бы вложенных друг в друга кубиче­ских гранецентрированных решеток из ионов Na+ или Сl-, кубическая решетка флюорита, слоистая решетка молибденита, гексагональная и тригональная решетки кварца, тригональная решетка кальцита.

 


Рис. 3. Полость рудной жилы в разрезе.


 

Многообразны типы кристаллических решеток у сульфидов и окислов. Особый интерес с точки зрения их структуры представляют силикаты, преобладающие в составе горных пород, и среди них в первую очередь такие, как полевые шпаты, слюды, оливин, пироксены, амфиболы. В составе этих минералов большую роль иг­рают кремний (Si) и кислород (О). В силикатах атом кремния всегда окружен четырьмя атомами кислорода,

 

ТАБЛИЦА 1

 







Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.