Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







А-аминокислоты: хим.св-ва (р-ии этерификации, ацилирования, алкилирования, образование иминов), р-ии дезаминирования, строение биполярного иона , кислотно-основные св-ва





Стр 226 тюкавкин

Стр 236 этерефикация

Кислотно-основные св-ва стр 233

Дезаминирование

Аминокислоты содержат первичную аминогруппу и подобно первичным аминам взаимодействуют с азотистой кислотой с выделением азота. При этом происходит замещение аминогруппы на гидроксильную.

RCH(NH2)COOH + HNO2 ® RCH(OH)COOH + N2 ­ + H2O

Реакция используется для количественного определения аминокислот по объему выделившегося азота (метод Ван-Слайка).

Алкилирование N-фталимидмалонового эфира

Алкилирование и арилирование

При взаимодействии аминокислот с избытком алкилгалогенида происходит исчерпывающее алкилирование аминогруппы и образуются внутренние соли.

Аминокислоты арилируются 2,4-динитрофторбензолом (ДНФБ) в щелочной среде. Реакция протекает как нуклеофильное замещение в активированном ароматическом кольце.

Реакция используется для установления аминокислотной последовательности в пептидах.

Ацилирование

Аминокислоты взаимодействуют с ангидридами и хлорангидридами с образованием N-ацильных производных.

Реакция используется для защиты аминогруппы в синтезе пептидов. Такая защита должна легко сниматься, а амиды, как известно, гидролизуются в жестких условиях. При разработке методов синтеза пептидов были найдены защитные группы, которые легко удаляются путем гидролиза или гидрогенолиза.

Этерификация

Аминокислоты взаимодействуют со спиртами в присутствии газообразного HCl как катализатора с образованием сложных эфиров.

 

В отличие от самих аминокислот, их сложные эфиры – легко летучие соединения и могут быть разделены путем перегонки или газожидкостной хроматографии, что используется для анализа и разделения смесей аминокислот, полученных при гидролизе белков.

Кислотно-основные свойства

Аминокислоты содержат кислотный и основный центры и являются амфотерными соединениями. В кристаллическом состоянии они существуют в виде внутренних солей (биполярных ионов), которые образуются в результате внутримолекулярного переноса протона от более слабого основного центра (СОО-) к более сильному основному центру (NH2).

Ионное строение аминокислот подтверждается их физическими свойствами. Аминокислоты – нелетучие кристаллические вещества с высокими температурами плавления. Они нерастворимы в неполярных органических растворителях и растворимы в воде. Их молекулы обладают большими дипольными моментами.

Форма существования аминокислот в водных растворах зависит от рН. В кислых растворах аминокислоты присоединяют протон и существуют преимущественно в виде катионов. В щелочной среде биполярный ион отдает протон и превращается в анион.

Реакция используется для защиты аминогруппы в синтезе пептидов. Такая защита должна легко сниматься, а амиды, как известно, гидролизуются в жестких условиях. При разработке методов синтеза пептидов были найдены защитные группы, которые легко удаляются путем гидролиза или гидрогенолиза.

25 декарбоксилирование альфа аминокислот- образование биогенных аминов и биорегуляторов (коламин,триптамин)

Декарбоксилирование - Превращения аминокислот по карбоксильной группе.

Процесс отщепления карбоксильной группы аминокислот в виде СO2 получил название декарбоксилирования.

Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами, нуждающимися в пиридоксальфосфате в качестве кофермента. Продуктами реакции являются СО2 и амины, которые оказывают выраженное биологическре действие на организм, и поэтому названы биогенными аминами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Биогенные амины

Гистамин образуется при декарбоксилировании гистидина в тучных клетках соединительной ткани. В организме человека выполняет следующие функции:

· стимулирует секрецию желудочного сока и слюны;

· повышает проницаемость капилляров, вызывает отеки, снижает АД, но увеличивает внутричерепное давление, вызывая головную боль;

· сокращает гладкую мускулатуру легких, вызывает удушье;

· участвует в формировании воспалительных реакций – расширение сосудов, покраснение, отечность ткани;

· вызывает аллергическую реакцию;

· нейромедиатор;

· медиатор боли.

Серотонин – образуется при декарбоксилировании и дальнейшем окислении триптофана. Биологические функции:

· оказывает мощное сосудосуживающее действие;

· повышает кровяное давление;

· участвует в регуляции температуры тела, дыхания;

· медиатор нервных процессов в ЦНС (обладает антидепрессантным действием).

Дофамин образуется при декарбоксилировании диоксифенилаланина (ДОФА). При дальнейшем окислении и метилировании образуюся адреналин и норадреналин. Дофамин является нейромедиатором, контролирующим произвольные движения, эмоции и память. В высоких концентрациях дофамин стимулирует адренорецепторы, увеличивает силу сердечных сокращений, повышает сопротивление периферических сосудов (с параллельным увеличением почечного и коронарного кровотока). Кроме того, дофамин тормозит секрецию пролактина и соматотропина.

В нервных клетках декарбоксилирование глутамата приводит к образованию g-аминомасляной кислоты (ГАМК), которая служит основным тормозным медиатором высших отделов мозга. Содержание ГАМК в головном мозге в десятки раз выше других нейромедиаторов. Она увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса.

Этаноламин образуется при декарбоксилировании серина. В организме используется для синтеза холина, ацетилхолина, фосфатидилэтаноламинов, фосфатидилхолинов.

При декарбоксилировании лизина образуется кадаверин

Вопрос (доп)

Декарбоксилирование α-аминокислот – образование биогенных аминов и биорегуляторов (гиста-мин, триптамин).
Некоторые аминокислоты и их производные могут подвергаться декарбоксилированию - отщеплению ос-карбоксильной группы. В тканях млекопитающих декарбоксилированию может подвергаться целый ряд аминокислот или их производных: Три, Тир, Вал, Гис, Глу, Цис, Apr и др. Продуктами реакции являются СО2 и амины, которые оказывают выраженное биологическое действие на организм (биогенные амины):

Реакции декарбоксилирования необратимы и катализируются ферментами декарбоксилазами. Простетическая группа декарбоксилаз в клетках животных - пиридоксальфосфат.

Амины, образовавшиеся при декарбоксилировании аминокислот, часто являются биологически активными веществами. Они выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК и др.), гормонов (норадреналин, адреналин), регуляторных факторов местного действия (гистамин, карнозин, спермин и др.).

Гистамин образуется при декарбоксилировании аминокислоты гистидина. Он синтезируется в тучных клетках, накапливается в секреторных гранулах, выделяется при раздражении клеток.

Гистамин оказывает разнообразные биологические эффекты: вызывает расширение сосудов, снижает артериальное давление, увеличивает тканевую проницаемость, вызывает местный отёк, стимулирует желудочную секрецию, обладает бронхоспатическим эффектом. В высокой концентрации он является медиатором воспалительных и аллергических реакций.

Серотонин образуется при декарбоксилировании гидрокситриптофана. Он синтезируется в хромаффиннных клетках, в некоторых ядрах подкорковых структур, тромбоцитах.

Эффекты серотонина: вызывает спазм сосудов, повышение артериального давления, стимулирует перистальтику кишечника, участвует в терморегуляции, в механизмах сна, является источником для синтеза гормона мелатонина, влияет на психические реакции человека. Так, при шизофрении наблюдается нарушение обмена серотонина.

Катехоламины (дофамин, адреналин, норадреналин) синтезируются из аминокислоты тирозина.

Дофамин – возбуждающий медиатор, при его дефиците развивается болезнь Паркинсона (адинамия, ригидность, тремор). Адреналин вызывает спазм сосудов, повышают артериальное давление, стимулирует работу сердца, является гормоном.

Норадреналин в основном выполняет нейромедиаторные функции.

Полиамины (спермин, спермидин) синтезируются из орнитина и метионина, входят в состав хроматина, участвует в регуляции процессов трансляции, транскрипции, репликации.

Так как биогенные амины очень активны, они быстро инактивируются в тканях. Распад биогенных аминов осуществляется несколькими способами: окисление, метилирование, дезаминирование. Основным способом инактивации биогенных аминов является окислительное дезаминирование под действием ферментов аминооксидаз (моноаминооксидаз, полиаминооксидаз).

Аминокислоты могут ковалентно связы­ваться друг с другом с помощьюпептидных свя­зей. Карбоксильная группа одной аминокислоты ковалентно связывается с аминогруппой другой аминокислоты. При этом возникает R-CO-NH-R связь, называемая пептидной связью. При этом происходит отщепление мо­лекулы воды.

К биогенным аминам относят и катехолами-ны (дофамин, норадреналин и адреналин). Дофамин, в частности, является медиатором среднего отдела мозга. Норадреналин - возбуждающий медиатор в гипоталамусе, а также медиатор синаптической нервной системы и разных отделов головного мозга. Адреналин - гормон, активно синтезирующийся при стрессе и регулирующий основной обмен, а также усиливающий сокращение сердечной мышцы.







Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.