Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Как реализуется ультразвуковой метод контроля качества детали?





Ультразвукова́я дефектоскопи́я — метод основанный С.Я. Соколовым, позволяющий осуществлять поиск дефектов в материале изделия путём излучения и принятия ультразвуковых колебаний, отраженных от внутренних несплошностей (дефектов), и дальнейшего анализа их амплитуды, времени прихода, формы и других характеристик с помощью специального оборудования — ультразвукового дефектоскопа. Является одним из самых распространенных методов неразрушающего контроля.

Существует несколько методов возбуждения ультразвуковых волн в исследуемом объекте. Наиболее распространенным является использование пьезоэлектрического эффекта. В этом случае излучение ультразвука производится с помощью преобразователя, который преобразует электрические колебания в акустические с помощью обратного пьезоэлектрического эффекта. Отраженные сигналы попавшие на пьезопластину из-за прямого пьезоэлектрического эффекта преобразуются в электрические, которые и регистрируются измерительными цепями.

Как реализуется магнитный метод контроля?

Магнитные методы контроля применяются для ферромагнитных материалов. Они основаны на измерении и анализе результатов взаимодействия электромагнитного поля с контролируемым объектом. При наличии в шве несплошностей, вследствие меньшей магнитной проницаемости дефекта, магнитный силовой поток будет огибать дефект, создавая магнитные потоки рассеяния (рис. 182).

При индукционном методе для регистрации магнитных полей рассеяния, образующихся около дефектов в намагниченной детали, используют катушку, которую двигают вдоль шва с постоянной скоростью. Магнитным полем детали в катушке наводится электродвижущая сила (ЭДС). В местах рассеяния поля ЭДС изменяется - образуется электрический сигнал, по которому судят о дефекте. Катушка намотана на сердечнике из металла с высокой магнитной проницаемостью - вместе они составляют магнитную индукционную головку. Она проще феррозонда, так как не требует генератора для питания. Метод отличается повышенной надежностью, может работать в сильных магнитных полях, однако требует перемещения магнитной головки с постоянной скоростью вдоль направления магнитного поля, при этом щель рабочего зазора в сердечнике должна быть перпендикулярна к направлению движения

Преимущества магнитографического метода контроля: высокая разрешающая способность (возможность выявления мелких дефектов), позволяющая регистрировать неоднородные магнитные поля, соизмеримые с размером частиц магнитного слоя ленты (порядка 1 мкм), возможность регистрации дефектов на сложных поверхностях и в узких зазорах. Недостатки: необходимость вторичного преобразования информации, регистрируются только составляющие магнитных полей вдоль поверхности ленты, сложность размагничивания и хранения ленты - необходимо предотвращать воздействие внешних магнитных полей.

 

Радиационный метод контроля.

Радиационные методы контроля основаны на регистрации и анализе ионизирующего излучения при его взаимодействии с контролируемым изделием. Наиболее часто применяются методы контроля прошедшим излучением, основанные на различном поглощении ионизирующих излучений при прохождении через дефект и бездефектный участок сварного соединения (рис. 178). Интенсивность прошедшего излучения будет больше на участках меньшей толщины или меньшей плотности, в частности в местах дефектов - несплошностей или неметаллических включений.

Метод построения «дерева» поиска отказов в изделии.

Дерево отказов (аварий, происшествий, последствий, нежелательных событий, несчастных случаев и пр.) лежит в основе логико – вероятностной модели причинно-следственных связей отказов системы с отказами ее элементов и другими событиями (воздействиями). При анализе возникновения отказа состоит из последовательностей и комбинаций нарушений и неисправностей, и таким образом оно представляет собой многоуровневую графологическую структуру причинных взаимосвязей, полученных в результате прослеживания опасных ситуаций в обратном порядке, для того чтобы отыскать возможные причины их возникновения

Тепловой и акустический метод контроля

Эхо-метод или эхо-импульсный метод — наиболее распространенный: преобразователь генерирует колебания (т.е. выступает в роли генератора) и он же принимает отражённые от дефектов эхо-сигналы (приёмник). Данный способ получил широкое распространение за счёт своей простоты, т.к. для проведения контроля требуется только один преобразователь, следовательно при ручном контроле отсутствует необходимость в специальный приспособлениях для его фиксации (как, например, в дифракционно-временном методе) и совмещении акустических осей при использовании двух преобразователей. Кроме того, это один из немногих методов ультразвуковой дефектоскопии, позволяющий достаточно точно определить координаты дефекта, такие как глубину залегания и положение в исследуемом объекте (относительно преобразователя).

Тепловой контроль основан на измерении, мониторинге и анализе температуры контролируемых объектов. Основным условием применения теплового контроля является наличие в контролируемом объекте тепловых потоков. Процесс передачи тепловой энергии, выделение или поглощение тепла в объекте приводит к тому, что его температура изменяется относительно окружающей среды. Распределение температуры по поверхности объекта является основным параметром в тепловом методе, так как несет информацию об особенностях процесса теплопередачи, режиме работы объекта, его внутренней структуре и наличии скрытых внутренних дефектов. Тепловые потоки в контролируемом объекте могут возникать по различным причинам.

Активный метод теплового контроля используется, если в процессе эксплуатации контролируемый объект не подвергается достаточному тепловому воздействию (например детали из композиционных материалов, объекты искусства, настенные фрески), либо измерение температуры объекта в процессе эксплуатации технически невозможно (лопасти вертолета). Активный метод теплового контроля предполагает нагрев объекта специальными внешними источниками энергии для создания тепловых потоков в во время контроля. Активный метод применяется преимущественно для неразрушающего контроля материалов и изделий.

Пассивный метод теплового контроля не нуждается во внешнем источнике теплового воздействия, тепловое поле в объекте контроля возникает при его эксплуатации или изготовлении. При пассивном контроле может использоваться как постоянно действующее естественное тепловое нагружение объекта (стена здания или холодильника, разделяющая теплое и холодное помещения, работающий электродвигатель, контактные электрические соединения под нагрузкой и т.д.) так и переходные тепловые процессы (диагностика кровли здания, контроль авиационных сотовых панелей, поиск зон отслоения штукатурки от стен и т.д.)

 

 







Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.