Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Перспективные виды систем электрической тяги





В настоящее время в России на железных дорогах применяют две системы электрической тяги:

- постоянного тока 3 кВ;

- переменного однофазного тока 25 кВ 50 Гц.

Недостаток системы постоянного тока связан с относительно низким напряжением, что требует для реализации необходимой мощности значительных токов. Следовательно, необходимо значительное сечение проводов контактной сети, частые расположения тяговых подстанций.

Этот недостаток устранен в системе переменного тока, но она имеет свои недостатки: повышенное электромагнитное мешающее влияние из-за соединения переменного магнитного поля, асимметричная загрузка фаз питающей 3-х фазной сети, более сложный электроподвижной состав.

N w w

В свете дальнейших перспектив развития систем электрической тяги следует отметить то направление, которое предусматривает создание системы постоянного тока высокого напряжения.

Большинство железных дорог Содружества Независимых Государств (СНГ) электрифицировано на постоянном токе при напряжении в контактной сети 3 кВ. Однако такое напряжение не является оптимальным ни для устройств электроснабжения, ни для э. п.с.. Оно представляет собой компромиссное решение, определяемое стоимостью потерь энергии в такой системе и стоимостью ее устройств.

Повышение же напряжения в контактной сети постоянного тока, например, до 6 или 12 кВ и более с целью уменьшения потерь энергии в системе при существующих принципах регулирования режимов работы э. п.с. приводит к значительному удорожанию электрической аппаратуры и тяговых двигателей.

Характерно, что отмеченные недостатки системы тяги постоянного тока 3 кВ связаны с тем, что в ней существует непосредственная электрическая связь между напряжением контактной сети и напряжением тягового электрооборудования. Если устранить эту связь и обеспечить возможность регулирования в широких пределах напряжения на тяговых двигателях, то можно будет повысить напряжение в контактной сети в несколько раз, т. е. существенно улучшить технико-экономические показатели системы тяги постоянного тока.

Новые возможности в этом отношении открывает применение систем импульсного преобразования энергии, устраняющих непосредственную связь между напряжениями контактной сети и тяговых двигателей. Применение тиристорного управления режимами работы тяговых двигателей позволяет плавно регулировать в широком диапазоне напряжение, подводимое к тяговым двигателям, независимо от значения напряжения в контактной сети.

Перспективными являются системы, при которых в качестве тяговых используются бесколлекторные двигатели - асинхронные или синхронные (вентильные).

Если в системе тяги постоянного тока поднять напряжение в контактной сети в 2-3 раза, то при использовании тиристорного управления работой тяговых двигателей, помимо экономии энергии при пуске, уменьшения количества аппаратуры управления э. п.с., снизится стоимость сооружения и эксплуатации системы электроснабжения. На электрифицированных участках при повышенном в несколько раз напряжении в контактной сети будет меньше тяговых подстанций, возрастет скорость движения поездов и пропускная способность участков по условиям электроснабжения.

Перевод участков железных дорог с 3 на 6 кВ и более не может быть осуществлен сразу на всей сети железных дорог; в первую очередь это целесообразно выполнить для наиболее грузонапряженных участков, на которых не хватает пропускной способности по условиям электроснабжения при напряжении 3 кВ.

Примыкающие к ним относительно малодеятельные участки могут продолжать работать при напряжении в контактной сети 3 кВ.

При переходе с участка, имеющего в контактной сети напряжение 6 кВ, на участок с напряжением 3 кВ электровоз можно не менять, а выключить на нем половину преобразователя энергии, благодаря чему он и будет работать на напряжении 3 кВ. Наоборот, при переходе с участка с напряжением 3 кВ на участок с напряжением 6 кВ на электровозе включают вторую половину преобразователя.

Этот принцип кратного дробления мощности преобразователя энергии на электровозе может быть использован и при напряжении в контактной сети 12 и 24 кВ постоянного тока.

Повышать напряжение в контактной сети сверх 24 кВ при существующих устройствах электроснабжения уже невыгодно: резко возрастают стоимость устройств и их техническое обслуживание, а также потери энергии как в системе электроснабжения, так и на э. п.с.

Возможна и другая перспективная система тяги постоянного тока при напряжении в контактной сети 6 кВ и более. В этом случае постоянный ток контактной сети с помощью специальных преобразователей, устанавливаемых на э. п.с., преобразуется в трехфазный (или более) переменный ток высокого напряжения регулируемой частоты, на котором работают трехфазные асинхронные тяговые двигатели. Предполагается одновременно плавное бесконтактное регулирование напряжения и режимов работы этих двигателей.

Для практического осуществления такой системы (рис. 1.19) преобразователи должны быть выполнены на высоковольтных тиристорах. Асинхронные тяговые двигатели должны быть рассчитаны на напряжение, например, 6 или 12 кВ и более. Подобные двигатели на напряжение 10 кВ мощностью 1000 кВ серийно выпускает промышленность. Однако следует помнить, что тяговые двигатели э. п.с. являются машинами предельного исполнения, т. е. такими, у которых должно быть обеспечено использование конструктивных, технологических и эксплуатационных возможностей при сохранении необходимой надежности. При разработке асинхронных фазных тяговых двигателей целесообразно для расширения диапазона регулирования их характеристик предусмотреть включение в цепь ротора

Конденсаторов. Меняя их емкость, можно существенно изменять не только вращающий «момент двигателя, но и энергетические показатели системы тяги в зависимости от скорости движения как в тяговом режиме, так и при рекуперации.

 

Однако при таком способе увеличения вращающего момента тягового двигателя, а следовательно, и тока ротора существенно возрастает нагрев его обмоток. Поэтому для обеспечения электрической прочности обмоток двигателя нужно использовать более теплостойкую по сравнению с существующей изоляцию обмоток, например полиамидную, и, кроме того, интенсивную систему охлаждения двигателей.

Известен и другой вариант системы электрической тяги постоянного тока с асинхронными тяговыми двигателями при напряжении в контактной сети 6; 12 кВ и более. В этом случае на электровозе имеется специальный преобразователь энергии постоянного тока с напряжением контактной сети в энергию постоянного же тока, но напряжением 3 кВ. Эта энергия постоянного тока поступает на вход автономного инвертора напряжения, вырабатывающего трехфазный ток для питания асинхронных тяговых двигателей.

Принципиальная схема такой системы электрической тяги представлена на рис. 1.20. Такой электровоз является двухсистемным: он может работать на электрифицированном участке постоянного тока с напряжением в контактной сети как 12, так и 3 кВ. В заключение отметим, что по мере новых успехов различных отраслей науки и техники, и прежде всего электроники, преобразовательный и микропроцессорной техники будет происходить все более обстоятельная переоценка свойств и техникоэкономических показателей каждого вида тяги. Несомненно, это приведет к новым предложениям по дальнейшему совершенствованию существующих и созданию новых, более экономичных систем тяги.

 

Однако пока развитие электрической тяги осуществляется в рамках существующих систем постоянного и переменного тока. Главная задача состоит в реализации э. п.с. с асинхронными двигателями.

 

!!!8вопрос!!

Скоростные электропоезда

Идея организации скоростного движения в России появилась уже давно. В 1974 г. был построен первый скоростной поезд ЭР200, с 1984-го курсировавший по линии Москва — Ленинград. Позднее появился и второй состав этого типа. В 2009 году их эксплуатация была прекращена. В 1990-е годы инженеры продолжали работать над созданием более совершенных и скоростных поездов. Однако выпущенный в единственном экземпляре электропоезд «Сокол-250»так и остался нереализованным проектом. Был построен и испытан опытный прототип, работы над которым ввиду неудачности конструкции были прекращены. В 2006 г. ОАО «РЖД» заключило контракт на закупку в Германии восьми высокоскоростных электропоездов «Сапсан» — поездов семейства«Сименс Веларо». Они ходят по маршрутам Москва — Санкт-Петербург и Санкт-Петербург — Москва — Нижний Новгород. Также уже курсирует скоростной поезд "Аллегро" из Санкт-Петербурга в Финляндию.

!!!9 вопрос!! 3. СИЛЫ, ДЕЙСТВУЮЩИЕ НА ПОЕЗД

СИЛЫ И РЕЖИМЫ ДВИЖЕНИЯ

 

[ПСОТП, ОТПОсип] В процессе движения поезда на него действуют различные внутренние и внешние силы. Как известно из механики, внутренние силы уравновешиваются внутри системы и не влияют на ее движение. На характер поступательного движения системы влияют только внешние силы или их составляющие, направленные по ходу движения или в противоположную сторону.

Рис.3.1-1. Силы, действующие на поезд

К внешним силам, действующим на поезд, относятся:

- касательная сила тяги Fк, создаваемая локомотивом во взаимодействии с рельсами и приложенная к ободам ведущих колес;

- тормозная сила Вт, создаваемая тормозными средствами поезда во взаимодействии с рельсами и приложенная к ободам тормозных колес;

- силы сопротивления движению W - все остальные внешние силы, приведенные к ободам колес подвижного состава.

Силу тяги и тормозные силы называют управляемыми, т.к. их можно регулировать. На силы сопротивления движению воздействовать нельзя, поэтому их называют неуправляемыми.

Сила тяги направлена по движению поезда, тормозная сила действует в противоположном направлении. Силы сопротивления, как правило, также действуют против движения. Исключение составляет случай движения по спуску.

По законам механики несколько сил, действующих на точку или механическую систему, можно заменить одной силой, которую в теории тяги поездов называют ускоряющей Fу или равнодействующей Fд силой:

Fy = Fд = Fк - W - Bт. (3.1-1)

Одновременно три составляющие равнодействующей силы на поезд не действуют, т.к. в один и тот же момент времени не имеет смысла тратить топливо (электроэнергию) на реализацию силы тяги локомотивом и использовать тормозную систему локомотива или вагонов. В зависимости от того, какие силы действуют в данный момент на поезд, различают следующие режимы движения:

- режим тяги, когда действуют сила тяги Fк и силы сопротивления движению W: Fд = Fк - W;

- режим выбега (холостого хода), когда на поезд действуют только силы сопротивления движению: Fд = -W,

- режим торможения, когда к силам сопротивления движению прибавляется тормозная сила Вт: Fд = - (W + Вт).

Равнодействующие силу, имеющую отрицательное значение, иногда называют замедляющей силой.

Старыми единицами измерения сил, используемыми в ПТР включая издание 1985 г., являются килограмм-сила (кгс) и тонно-сила (тс). Это связано с градуировкой приборов, установленных на подвижном составе [ИПЖДТурб]. Новыми единицами в соответствии с международной системой единиц (СИ) - ньютон (Н = кг * м/с2) и килоньютон (кН). Перевод значений силы из одной системы единиц в другую выполняется по следующему соотношению:

1 кгс = 1 кг * g = 9.81 Н, (3.1-2)

где g = 9.81 м/с2 - ускорение свободного падения.

 

Силы, действующие на весь поезд, локомотив, вагон и т.п. называют полными и обозначают прописными буквами (Fк, W, Bт). Силы, действующие на единицу массы, называют удельными и обозначают строчными буквами (fк, w, bт)

, (3.1-3)

где F, f - полная и удельная силы (равнодействующая, тяги, сопротивления или торможения), Н;
P - расчетная масса локомотива, т;
Q - масса вагонного состава, т.

В случаях, когда поезд рассматривают как единое целое с неизменной длиной и равноускоренным движением всех его подвижных единиц (т.е. при описании его движения одним дифференциальным уравнением), местом приложения сил считается середина поезда. Причем учитываются суммарные силы, действующие на все составной части поезда (локомотив, вагон, группу однотипных вагонов и т.д.). В противном случае, силы, действующие на отдельные составной части поезда, учитываются отдельно и местом их приложения являются середины этих частей.

Вопрос 10

При движении э.п.с. потребляет электрическую энергию из контактной сети, расходуя ее на преодоление сил сопротивления движению. Таким образом, по направлению движения поезда действует сила тяги локомотива или моторного вагона, а против- сила сопротивления движению. Их разность и определяет характер движения поезда: ускоренное, если сила тяги больше суммарной силы сопротивления движению, замедленное, если она меньше. Возможно движение с постоянной скоростью, если указанные силы равны, Поезд представляет собой систему отдельных(дискретных) твердых тел − вагонов, соединенных автосцепкой друг с другом и с локомотивом.

Поэтому наиболее точной является модель, учитывающая поезд как многомассовую систему. Однако такая модель сильно усложняет расчеты, даже при использовании современных компьютеров; поэтому она используется очень редко и только в расчетах продольной динамики поезда. Так как каждый вагон под влиянием сил продольной динамики поезда имеет случайные, обычно колебательные перемещения относительно центра массы поезда, то математическое описание такого сложного процесса движения поезда до сих пор не имеет четкого формулирования в виде системы дифференциальных уравнений Лагранжа и соответственно нет его полного аналитического решения. Поэтому для практических тяговых расчетов поезд считают одной фиктивной материальной точкой, в которой сосредоточена вся масса поезда.

Математическое описание процесса движения такого поезда, определяющее в каждый момент времени связь между действующими на него силами и его ускорением, называют законом движения поезда. Этот закон записывают на основании2-го закона Ньютона(действующая на тело сила равна произведению массы этого тела на его ускорение) в виде обыкновенного дифференциального уравнения первого порядка, связывающего массу поезда, действующие на него силы, пройденный путь и время движения(обычно путь и время входят в уравнение движения через скорость V):

FП = FК -W- B - основное уравнение движения поезда

FК­­­­­­­­­ − сила тяги, действующая от электровоза на поезд;

W − сила сопротивления движению поезда, включая сопротивление движению электровоза.

B − тормозная сила поезда. При колодочном торможении это сумма сил торможения электровоза и всех колодок состава; при электрическом торможении тормозная сила только электровоза; возможно комбинированное торможение– электрическим тормозом электровоза и колодочным тормозом состава;

Это уравнение учитывает не только ускорение поступательного движения поезда, но и эффект вращающихся узлов локомотивов и вагонов– якорей тяговых двигателей, тяговой передачи, колесных пар. Правда, силы инерции вращающихся частей невелики по сравнению с силами инер-ции поступательно движущихся масс поезда: у локомотивов они составляют в зависимости от типа электровоза примерно10–20%, у вагонов5–6%. Однако во избежание ошибки при решении уравнения движения поезда эти силы всегда учитывают.

Закон движения поезда позволяет рассчитать необходимые для организации работы железных дорог режимы движения каждого поезда, его массу, в том числе ее предельное значение– критический вес, построить график движения поездов, определить провозную и пропускную способность участков и направлений в целом, составить график работы локомотивных бригад, оценить использование и производительность локомотивов и т.д.

Для этого выполняют тяговые расчеты, в задачу которых входит предварительный выбор массы поезда, расчет его времени хода и скорости движения по перегонам, определение потребления тока из контактной сети и расхода электроэнергии на тягу поезда, определение температуры нагрева тяговых двигателей и другого силового электрооборудования, ис-пользование мощности э.п.с. и устройств системы тягового электроснабжения.







Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.