Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Протеолиз (расзепление) полипептидных цепей, роль сигнального пептида в переносе через мембрану.





Протеолиз — процесс гидролиза белков, катализируемый ферментами пептидгидролазами, или протеазами. Протеолиз играет большую роль в следующих процессах в организме: расщепление до аминокислот белков пищи благодаря действию на них пищеварительных ферментов в желудке и тонкой кишке; расщепление собственных белков организма в процессе метаболизма; образование ферментов, гормонов и биологически активных пептидов из их неактивных предшественников; в растениях протеолиз участвует в мобилизации запасных белков семян при прорастании. Действие протеолитических ферментов может быть разделено на две категории:

1. ограниченный протеолиз, при котором протеаза специфично расщепляет одну или несколько пептидных связей в белке-мишени, что обычно приводит к изменению функционального состояния последнего: ферменты, например, при этом становятся активными, а прогормоны превращаются в гормоны; 2. неограниченный, или тотальный протеолиз, при котором белки расщепляются до отдельных аминокислот. По месту атаки молекулы субстрата протеолитические ферменты делятся на эндопептидазы и экзопептидазы: эндопептидазы, или протеиназы, расщепляют пептидные связи внутри пептидной цепи. Они узнают и связывают короткие пептидные последовательности субстратов и относительно специфично гидролизуют связи между определёнными аминокислотными остатками. экзопептидазы гидролизуют пептиды с конца цепи: аминопептидазы — с N-конца, карбоксипептидазы — с С-конца. Наконец, дипептидазы расщепляют только дипептиды. Протеазы также классифицируются по типу их механизма катализа. Международный союз по биохимии и молекулярной биологии (International Union of Biochemistry and Molecular Biology) выделяет несколько классов протеаз, включая:

· Сериновые протеазы

· Аспарагиновые протеазы

· Цистеиновые протеазы

· Металлопротеазы

 

Описать инициацию трансляции у эукариот: КЭП-зависимый и КЭП-независимый механизм нахождения рибосомой стартового кодона. Последовательность Козак, факторы инициации, связывание с субъединицей рибосомы.

Трансля́ция (от лат. translatio — перенос, перемещение) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. У эукариот существуют два основных механизма нахождения рибосомой стартового AUG: кэпзависимый (сканирующий) и кэпнезависимый (внутренняя инициация). При сканирующем механизме рибосома (точнее, её малая субъединица) садится на 5'-конец мРНК в области кэпа и двигается вдоль молекулы мРНК, «сканируя» один кодон за другим, пока не наткнётся на инициаторный AUG. Для привлечения рибосомы к 5'-концу мРНК требуется специальная структура, кэп — 7-метилгуанин, прикреплённый к 5'-концевому нуклеотиду мРНК. При механизме внутренней инициации, называемом у эукариот также IRES-зависимым механизмом, рибосома садится на внутренний участок мРНК, называемый IRES (англ. Internal Ribosomal Entry Site, участок внутренней посадки рибосомы) — участок мРНК, обладающий выраженной вторичной структурой, позволяющей ему направлять рибосомы на стартовый AUG. По IRES-зависимому механизму инициируется синтез лишь на небольшой части клеточных мРНК, а также на РНК некоторых вирусов. В дополнение к основным механизмам инициации, при наличии перед стартовым кодоном поли(А)-лидера (например, в мРНК вирусов семейства оспы) реализуется нестандартный механизм инициации. В этом случае инициаторный комплекс не содержит факторов IF3 и eIF4F, и после сборки на 5'-нетранслируемой области осуществляет не последовательное сканирование мРНК, а т.н. АТФ-независимое "бесфазное блуждание". При этом инициация протекает значительно быстрее, чем в случае работы по классическому сканирующему механизму. Также у эукариот возможна реинициация трансляции, когда после окончания трансляции рибосома с белковыми факторами не диссоциирует от мРНК, а перескакивает с 3' на 5'-конец мРНК и начинает инициацию ещё раз. Это возможно благодаря т.н. циклизации мРНК в цитоплазме, то есть физическому сближению старт- и стоп-кодонов с помощью специальных белков.

Регуляция трансляции ферритином, трансляционным репрессором, связывающимся с 3 нетранслируемой последовательностью.

Система IRE/IRP

Регуляцию поступления железа в клетку обеспечивает система IRE/IRP (англ. IRE, iron-responsive element - железочувствительный элемент и IRP, iron-responsive element-binding proteins - белок, связывающийся с железочувствительным элементом). Основой регуляции является наличие особого участка на матричной РНК - железочувствительного элемента IRE, связывающего специфичный к нему белок IRP. В данном случае используется способность молекул IRP связываться с участком IRE соответствующих мРНК для двух белков – рецептора трансферрина (на рисунке ниже обозначен как TfR) и ферритина. При этом в комплексе с железом IRP не активен и не присоединяется к мРНК, без железа - может присоединяться.

1. Присоединение IRP к мРНК рецептора трансферрина ближе к ее 3'-концу защищает мРНК от разрушения РНКазами, действующими с 3'-конца мРНК:

При низкой концентрации железа в клетке белок IRP является активным, присоединяется к мРНК и, как следствие, мРНК рецепторов трансферрина существует дольше, образуется больше белков-рецепторов и повышается поток железа в клетки. При высоком содержании железа в клетке белок IRP присоединяет железо, становится неактивным, с мРНК связаться не может и, соответственно, не защищает ее от разрушения. Синтез рецепторов к трансферрину не происходит, дополнительное железо клеткой не захватывается.

2. Взаимодействие IRP с мРНК ферритина происходит ближе к 5'-концу, т.е. там где начинается трансляция: при низком содержании железа в клетке присоединение "пустого" активного белка IRP к мРНК для ферритина со стороны 5'-конца не позволяет ей участвовать в процессе трансляции и синтезе новых молекул ферритина, когда концентрация железа в клетке возрастает, оно присоединяется к IRP, снижает его сродство к мРНК и позволяет синтез ферритина.

Конечным результатом при наличии железа в клетке является исчезновение рецепторов к трансферрину с мембраны и увеличение синтеза молекул ферритина, депонирующего железо. При отсутствии железа активируется синтез рецепторов к трансферрину и захват железа из крови, и подавление синтеза запасающего белка ферритина.

ТРАНСЛЯЦИОННАЯ РЕПРЕССИЯ

Типичный механизм трансляционной репрессии состоит в том, что специальный белок, называемый репрессором, специфически связывается с участком мРНК, перекрывающимся, как правило, с участком связывания рибосомной частицы при инициации трансляции. Таким образом, связываемый белок-репрессор мешает связываться инициирующей рибосомной частице и тем самым либо уменьшает скорость инициации, либо полностью блокирует ее. Часто в месте связывания белка-репрессора имеется не очень стабильная двуспиральная структура - шпилька, которая легко расплетается инициирующей рибосомой. Белок-репрессор стабилизирует шпильку, превращая ее в плохо преодолимый барьер для инициирующей рибосомы. В научной литературе описано много случаев, когда репрессором является сам белок, кодируемый данной мРНК. Другими словами, мРНК репрессируется своим же продуктом. В результате получается регуляция по типу обратной связи: производство избыточного количества белка на данной мРНК приводит к связыванию этого белка с инициаторным участком своей мРНК и таким образом к репрессии собственного синтеза. Пример регуляции трансляции по типу обратной связи - репрессия синтеза фермента треонил-тРНК-синтетазы бактерии избыточным количеством этого фермента, связывающегося с инициаторным участком своей мРНК. В других случаях репрессором является специальный белок, и его способность связываться с определенными мРНК зависит от присутствия того или иного низкомолекулярного компонента - эффектора. Яркий пример такого рода приведен в статье Л.П. Овчинникова [1]. Там описано, как в животных клетках белок-репрессор блокирует инициацию синтеза белка ферритина, а железо в качестве эффектора лишает репрессор его мРНК-связывающих свойств и дерепрессирует ферритиновую мРНК, тем самым разрешая ее трансляцию. В целом механизмы трансляционной репрессии обеспечивают пути модуляции скоростей инициации трансляции в широких пределах либо в зависимости от внешних сигналов (эффекторов), либо по типу обратной связи. Трансляционная репрессия используется для тонкой регуляции белкового синтеза как прокариотическими, так и эукариотическими организмами.

 







ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

ЧТО ПРОИСХОДИТ ВО ВЗРОСЛОЙ ЖИЗНИ? Если вы все еще «неправильно» связаны с матерью, вы избегаете отделения и независимого взрослого существования...

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2024 zdamsam.ru Размещенные материалы защищены законодательством РФ.