Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Способность к символизации у приматов





Одна из первых попыток исследования способности животных к употреблению символов вместо реальных множеств была сделана К. Ферстером (Ferster, 1964). После 500 000 опытов ему удалось обу­чить двух шимпанзе тому, что определенным множествам соответ­ствуют «цифры» (от 1 до 7), выраженные двоичным кодом (от 000 до 111). Выучив эти комбинации, животные могли располагать их в по­рядке возрастания, но так и не научились использованию цифр для нумерации конкретных объектов.

Матсузава (Matsuzawa, 1985; Matsuzawa et al., 1986) обучал шим­панзе Аи установлению соответствия между различными множествами и арабскими цифрами от 1 до 6. В качестве образца он предъявлял набо­ры различных предметов, а для выбора — арабские цифры. В тесте с новыми вариантами множеств того же диапазона обезьяна успешно выбирала соответствующие им цифры («маркировала» множества с по­мощью символов). Можно было предположить, что ее обучение ограни­чивалось образованием условной связи (ассоциации) между цифрой и конкретными паттернами расположения элементов в соответствующих множествах, а также простым запоминанием всех использованных ком­бинаций. Однако в более поздней работе (Murofushi, 1997) было дока­зано, что дело этим не ограничивается, и Аи действительно связывала знаки с признаком «число» и оперировала ими как символами. Она правильно использовала цифры от 1 до 7 для маркировки разнообраз­ных новых множеств, абстрагируясь от паттернов расположения состав­ляющих их элементов, а также их размера, цвета и формы.

Особый вклад в решение вопроса о способности животных к ис­пользованию символов для характеристики множеств внесли работы американской исследовательницы Сары Бойзен и ее коллег (Boysen, Berntson, 1989; 1995; Boysen, 1993). Благодаря приемам, специально ак­центирующим внимание животного на признаке числа, и постепенно­му наращиванию сложности предъявляемых задач, им удалось обнару­жить у шимпанзе Шебы практически все элементы «истинного счета».



Сначала шимпанзе обучали класть одну и только одну конфету в каждый из шести отсеков специального подноса. Смыслом этой процедуры была де­монстрация соответствия «один к одному» между числом отсеков и числом конфет. Следующая задача предназначалась для оценки прочности выработан­ного соответствия «один к одному» и обеспечения базы для введения арабс­ких цифр. В ответ на предъявление подноса с одной, двумя или тремя конфе­тами шимпанзе должна была выбрать одну из трех карточек с изображениями такого же числа кружков Авторы особо подчеркивали значение процедуры опыта: конфеты на поднос помещали всегда по очереди, при этом экспери­ментатор их вслух пересчитывал (демонстрация первого и второго принципов Гельман и Галлистеля — соогветствия «один к одному» и упорядоченности, т.е. ординальности). Постепенно сначала одну, потом две и т.д. карточки с изображениями точек стали заменять карточками с изображениями цифр, так что обезьяна должна была использовать эти ранее индифферентные для нее изображения вместо реальных множеств.

Когда Шеба стала уверенно выбирать все три цифры, соответствующие числу конфет на подносе, обучение продолжили с помощью компьютера. Обезьяне показывали на мониторе одну из цифр, а она должна была выбрать карточку с изображением соответствующего числа точек, т.е применить сим­волы к множествам другого типа, чем использованные при обучении.

По той же методике Шеба освоила еще два символа: цифры 0 и 4, а впоследствии также 5, 6 и 7. Интересно, что, осваивая новые мно­жества, она сначала по очереди прикасалась к каждой из конфет и только после этого выбирала соответствующую цифру. Дополнитель­ные опыты свидетельствуют, что это не было простым подражанием экспериментатору, а действительно неким способом «пересчета» кон­фет, а также других предметов (батареек, ложек и т.п.).

Для проверки способности Шебыоперировать усвоеннымисим­волами провели следующие два теста.

Первый авторы назвали«тестом на функциональный счет». В ла­боратории по двум из трех «тайников» раскладывали апельсины таким образом, чтобы их сумма не превышала 4. Шеба обходила все три «тайника» и видела (но не могла достать) находящиеся в них апель­сины. Затем обезьяна должна была подойти к «рабочей площадке» и выбрать из разложенных там по порядку цифр ту, которая соответ­ствовала числу апельсинов в тайниках. Оказалось, что уже во второй серии экспериментов (25 проб в каждой) шимпанзе выбирала пра­вильную цифру более чем в 80% случаев.

Во втором тесте апельсины заменили карточками с цифрами, ко­торые также помещали в любые два из трех «тайников» — сумма цифр также не превышала 4(тест на «сложение символов»). Использовали следующие комбинации цифр: 1 и 0, 1 и 1, 1 и 2, 1 и 3, 2 и 0, 2 и 2. Как и на предыдущем этапе, Шеба должна была обойти «тайники» и затем найти карточку с цифрой, соответствующей сумме. В первой же серии она выбирала правильную цифру в достоверном большинстве случаев (75%).

С Полученные результаты стали убедительным свидетельством

В способности шимпанзе усваивать символы, оперировать ими и вы­полнятьоперацию, аналогичную сложению, т.е. удовлетворяли двум В критериям «истинного счета».

Наряду с этими классическими опытами к настоящему времени предпринято значительное число попыток обучить животных несколь­ким ассоциациям между цифрами и множествами. Такие опыты важ­ны, но не позволяют решить вопрос о наличии у них элементов «ис­тинного счета».

Для более точного ответа на этот вопрос Д. Рамбо и его коллеги (Rumbaugh et al., 1989; 1993) не просто обучали шимпанзе выбирать множества, эквивалентные цифрам (от 1 до 6), но старались заставить их нумеровать объекты (свойствоординальности) или производить


определенное число действий в соответствии со значениями цифр (свойствокардинальности). В экспериментах участвовали животные ранее обучавшиеся языку-посреднику «йеркиш» (Лана, Шерман и Остин; см. 6.3).

Прежде всего шимпанзе научились с помощью джойстика пере­мещать курсор по экрану монитора. Затем они должны были научить­ся помещать курсор на арабскую цифру, которая появлялась на соот­ветствующем по счету месте в одной из прямоугольных рамок, разме­щенных вдоль верхнего края экрана.

В следующей задаче на другом краю экрана появлялись несколько прямоугольных рамок с одной фигуркой внутри каждой. Шимпанзе нужно было передвинуть в верхнюю половину экрана столько прямо­угольников, чтобы их число соответствовало значению показанной арабской цифры. После передвижения последней фигурки курсор надо было вернуть на исходную цифру. В начале обучения, как только шим­панзе передвигала очередную фигурку, в верхнем ряду появлялась со­ответствующая цифра. В тестах же такой «обратной связи» не было. Когда обезьяна помещала курсор на очередную фигурку, та исчезала, и при этом раздавался звуковой сигнал. Для успешного завершения задачи было необходимо «считать» и помнить, сколько фигурок уже исчезло. Шимпанзе успешно справлялись с этой задачей.

В В данной ситуации обезьяны продемонстрировали успешное

В использование принципов ординальности и кардинальности и их | способности были названы «начальным счетом» (entry-level counting;

д Rumbaugh, Washburn, 1993).

Наиболее убедительные доказательства способности животных представлять упорядоченность (ординальность) в ряду чисел были получены лишь недавно (Brannon, Terrace, 1998). Макаки-резусы, обученные прикасаться в возрастающем порядке к множествам от 1 до 4, могут без дополнительного обучения перенести этот навык на новые множества из диапазона 5—9.

Двух макаков-резусов предварительно обучали прикасаться в определен­ном порядке к каждому из четырех стимулов, не имеющих отношения к чис­лу. Для этого использовали 11 наборов, включавших по четыре картинки. На чувствительном к прикосновениям мониторе им предъявляли по четыре мно­жества, содержащие от 1 до 4 элементов. Обезьяны должны были по очереди прикоснуться к каждому из этих множеств в возрастающем порядке. По завер­шении обучения, когда обезьяны усвоили порядок выбора данных четырех мно­жеств, им предъявляли один из 35 новых наборов, где те же множества были расположены в другом порядке. Макаки правильно указывали порядок нараста­ния величины множеств, но, поскольку каждый набор в этой серии повторял­ся по нескольку раз, можно было предположить, что животные могли запоми­нать и использовать какие-то другие его характеристики, кроме собственно числа элементов. Однако на следующей стадии экспериментов такой возмож­ности у обезьян уже не было: им предъявляли 150 новых наборов множеств с числом элементов от 1 до 4, причем каждый показывали лишь один раз.

В тесте на перенос обезьянам предъявляли множества, содержа­щие от 1 до 9 элементов. Размер фигурок, образующих множества, варьировали. Обезьяны успешно ранжировали новые множества именно до числу элементов в них, используя для этого правило выбора по возрастанию, которому они ранее обучились на другом диапазоне множеств. Тем не менее авторы отмечают, что для окончательного ответа на вопрос о способности макак к использованию символов для расположения множеств в порядке возрастания числа элементов в них требуются дополнительные исследования (Brannon, Terrace, 1998).

и Приматы способны распознавать и обобщать признак «число элементов», устанавливать соответствие между этим отвлеченным признаком и ранее нейтральными для них стимулами — арабски­ми цифрами. Оперируя цифрами как символами, они способны ранжировать множества и упорядочивать их по признаку «число», а также совершать число действий, соответствующее цифре. Нако­нец, они способны к выполнению операций, изоморфных сложе­нию, но этот вопрос требует более точных исследований.









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2019 zdamsam.ru Размещенные материалы защищены законодательством РФ.