Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Классификация компьютерных сетей





 

Все многообразие компьютерных сетей можно классифицировать по различным признакам:

1) способ организации сети;

2) территориальная распространенность;

3) ведомственная принадлежность;

4) скорость передачи информации;

5) тип среды передачи;

6) топология;

7) организация взаимодействия компьютеров.

По способу организации сети подразделяются на реальные и искусственные.

Искусственные компьютерные сети (псевдосети) позволяют связывать компьютеры вместе через последовательные или параллельные порты и не нуждаются в дополнительных устройствах. Иногда связь в такой сети называют связью по нульмодему (не используется модем). Само соединение называют нуль-модемным. Искусственные сети используются, когда необходимо перекачать информацию с одного компьютера на другой. MS-DOS и Windows снабжены специальными программами для реализации нуль-модемного соединения. Основным недостатком этих компьютерных сетей является низкая скорость передачи данных и возможность соединения только двух компьютеров.

Реальные компьютерные сети позволяют связывать компьютеры с помощью специальных устройств коммутации и физической среда передачи данных. Основным недостаток реальных сетей является необходимость в дополнительных устройствах.

По территориальной распространенности компьютерные сети подразделяются на локальные, глобальные, и региональные.

Локальные компьютерные сети – это сети, перекрывающие территорию не более 10 кв.м. Они являются сетями закрытого типа, доступ к ним разрешен только ограниченному кругу пользователей, для которых работа в такой сети непосредственно связана с их профессиональной деятельностью.



Региональные компьютерные сети – это сети, расположенные на территории города или области

Глобальные компьютерные сети – это сети, расположенные на территории государства или группы государств. Например, всемирная сеть Internet. Они являются открытыми и ориентированы на обслуживание любых пользователей.

Термин «корпоративная сеть» также используется в литературе для обозначения объединения нескольких сетей, каждая из которых может быть построена на различных технических, программных и информационных принципах.

По ведомственной принадлежности различают ведомственные и государственные сети.

Ведомственные компьютерные сети принадлежат одной организации и располагаются на ее территории.

Государственные компьютерные сети – сети, используемые в государственных структурах.

По скорости передачи информации компьютерные сети делятся на низко-, средне- и высокоскоростные.

Низкоскоростные компьютерные сети – это сети, имеющие скорость передачи информации до 10 Мбит/с.

Среднескоростные компьютерные сети – это сети, имеющие скорость передачи информации до 100 Мбит/с.

Высокоскоростные компьютерные сети – это сети, имеющие скорость передачи информации свыше 100 Мбит/с.

По типу среды передачи компьютерные сети подразделяются на проводные-коаксиальные, на витой паре, оптоволоконные, беспроводные (с передачей информации по радиоканалам, в инфракрасном диапазоне).

По топологии компьютерных сетей они подразделяются на компьютерные сети с оконечным узлом, компьютерные сети с промежуточным узлом и компьютерные сети со смежным узлом.

Компьютерные сети с оконечным узлом – это сети, у которых узел расположен в конце только одной ветви.

Компьютерные сети с промежуточным узлом – это сети, у которых узел расположен на концах более чем одной ветви.

Компьютерные сети со смежным узлом – это сети, у которых узлы соединены, по крайней мере, одним путём, не содержащим никаких других узлов.

Узел сети представляет собой компьютер, либо коммутирующее устройство сети. Ветвь сети – это путь, соединяющий два смежных узла.

С точки зрения организации взаимодействия компьютеров, сети делят на одноранговые и иерархические.

Все компьютеры одноранговой сети равноправны. Любой пользователь се-ти может получить доступ к данным, хранящимся на любом компьютере.

Одноранговые сети могут быть организованы с помощью таких операционных систем, как Windows'3.11, Novell Netware Lite. Указанные программы работают как с DOS, так и с Windows. Одноранговые сети могут быть организованы также на базе всех современных 32-разрядных операционных систем и некоторых других.

Достоинства одноранговых сетей:

1. наиболее просты в установке и эксплуатации.

2. операционные системы DOS и Windows обладают всеми необходимыми функциями, позволяющими строить одноранговую сеть.

Недостаток: в условиях одноранговых сетей затруднено решение вопросов защиты информации. Поэтому такой способ организации сети используется для сетей с небольшим количеством компьютеров.

В иерархической сети при установке сети заранее выделяются один или несколько компьютеров, управляющих обменом данных по сети и распределением ресурсов. Такой компьютер называют сервером. Любой компьютер, имеющий доступ к услугам сервера называют клиентом сети или рабочей станцией.

Сервер в иерархических сетях – это постоянное хранилище разделяемых ресурсов. Сам сервер может быть клиентом только сервера более высокого уровня иерархии. Поэтому иерархические сети иногда называются сетями с выделенным сервером. Серверы обычно представляют собой высокопроизводительные компьютеры, возможно, с несколькими параллельно работающими процессорами, с винчестерами большой емкости, с высокоскоростной сетевой картой (100 Мбит/с и более).

Иерархическая модель сети является наиболее предпочтительной, так как позволяет создать наиболее устойчивую структуру сети и более рационально распределить ресурсы. Также достоинством иерархической сети является более высокий уровень защиты данных.

К недостаткам иерархической сети, по сравнению с одноранговыми сетями, относятся:

1. необходимость дополнительной ОС для сервера.

2. более высокая сложность установки и модернизации сети.

3. необходимость выделения отдельного компьютера в качестве сервера

Различают две технологии использования сервера: технологию файл-сервера и архитектуру клиент-сервер.

В первой модели используется файловый сервер, на котором хранится большинство программ и данных. По требованию пользователя ему пересылаются необходимая программа и данные. Обработка информации выполняется на рабочей станции.

В системах с архитектурой клиент-сервер обмен данными осуществляется между приложением-клиентом и приложением-сервером. Хранение данных и их обработка производится на мощном сервере, который выполняет также контроль над доступом к ресурсам и данным. Рабочая станция получает только результаты запроса. Разработчики приложений по обработке информации обычно используют эту технологию.

Наконец появилась сетецентрическая концепция, в соответствии с которой пользователь имеет лишь дешевое оборудование для обращения к удаленным компьютерам, а сеть обслуживает заказы на выполнение вычислений и получения информации. То есть пользователю не нужно приобретать программное обеспечение для решения прикладных задач, ему нужно лишь платить за выполненные заказы. Подобные компьютеры называют тонкими клиентами или сетевыми компьютерами.

В зависимости от того, одинаковые или неодинаковые ЭВМ применяют в сети, различают сети однотипных ЭВМ, называемые однородными, и разнотипных ЭВМ - неоднородные (гетерогенные). В крупных автоматизированных системах, как правило, сети оказываются неоднородными.

В зависимости от прав собственности на сети последние могут быть сетями общего пользования (public) или частными (private). Среди сетей общего пользования выделяют телефонные сети ТфОП (PSTN - Public Switched Telephone Network) и сети передачи данных (PSDN- Public Switched Data Network).

Сети также различают в зависимости от используемых в них протоколов и по способам коммутации.

Объединение глобальных, региональных и локальных вычислительных сетей позволяет создавать многоуровневые иерархии, которые представляют мощные средства для обработки огромных массивов данных и доступ к неограниченным информационным ресурсам.

Топологии сетей

сеть сервер интернет компьютерный

Термин «топология», или «топология сети», характеризует физическое расположение компьютеров, кабелей и других компонентов сети. Топология — это стандартный термин, который используется профессионалами при описании основной компоновки сети. Если Вы поймете, как используются различные топологии, Вы сумеете понять, какими возможностями обладают различные типы сетей. Чтобы совместно использовать ресурсы или выполнять другие сетевые задачи, компьютеры должны быть подключены друг к другу. Для этой цели в большинстве сетей применяется кабель. Однако просто подключить компьютер к кабелю, соединяющему другие компьютеры, не достаточно. Различные типы кабелей в сочетании с различными сетевыми платами, сетевыми операционными системами и другими компонентами требуют и различного взаимного расположения компьютеров. Каждая топология сети налагает ряд условий. Например, она может диктовать не только тип кабеля, но и способ его прокладки. Топология может также определять способ взаимодействия компьютеров в сети. Различным видам топологий соответствуют различные методы взаимодействия, и эти методы оказывают большое влияние на сеть.

Базовые топологии

Все сети строятся на основе трех базовых топологий:

ü шина (bus);

ü звезда (star);

ü кольцо (ring).

Если компьютеры подключены вдоль одного кабеля (сегмента (segment)), топология называется шиной. В том случае, когда компьютеры подключены к сегментам кабеля, исходящим из одной точки, или концентратора, топология называется звездой. Если кабель, к которому подключены компьютеры, замкнут в кольцо, такая топология носит название кольца. Хотя сами по себе базовые топологии несложны, в реальности часто встречаются довольно сложные комбинации, объединяющие свойства нескольких топологий.

Шина

Топологию «шина» часто называют «линейной шиной» (linear bus). Данная топология относится к наиболее простым и широко распространенным топологиям. В ней используется один кабель, именуемый магистралью или сегментом, вдоль которого подключены все компьютеры сети.

Взаимодействие компьютеров

В сети с топологией «шина» компьютеры адресуют данные конкретному компьютеру, передавая их по кабелю в виде электрических сигналов. Чтобы понять процесс взаимодействия компьютеров по шине, Вы должны уяснить следующие понятия:

передача сигнала;

отражение сигнала; терминатор.

Передача сигнала

Данные в виде электрических сигналов передаются всем компьютерам сети; однако информацию принимает только тот, адрес которого соответствует адресу получателя, ' зашифрованному в этих сигналах. Причем в каждый момент времени, только один компьютер может вести передачу. Так как данные в сеть передаются лишь одним компьютером, ее производительность зависит от количества компьютеров, подключенных к шине. Чем их больше, т.е. чем больше компьютеров, ожидающих передачи данных, тем медленнее сеть. Однако вывести прямую зависимость между пропускной способностью сети и количеством компьютеров в ней нельзя. Ибо, кроме числа компьютеров, на быстродействие сети влияет множество факторов, в том числе:

ü характеристики аппаратного обеспечения компьютеров в сети;

ü частота, с которой компьютеры передают данные;

ü тип работающих сетевых приложений;

ü тип сетевого кабеля;

ü расстояние между компьютерами в сети.

Шина — пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе остальных. В активных топологиях компьютеры регенерируют сигналы и передают их по сети.

Отражение сигнала

Данные, или электрические сигналы, распространяются по всей сети - от одного конца кабеля к другому. Если не предпринимать никаких специальных действий, сигнал, достигая конца кабеля, будет отражаться и не позволит другим компьютерам осуществлять передачу. Поэтому, после того как данные достигнут адресата, электрические сигналы необходимо погасить.

Терминатор

Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливают терминаторы (terminators), поглощающие эти сигналы. Все концы сетевого кабеля должны быть к чему-нибудь подключены, например, к компьютеру или к баррел-коннектору — для увеличения длины кабеля. К любому свободному — неподключенному — концу кабеля должен быть подсоединен терминатор, чтобы предотвратить отражение электрических сигналов.

Нарушение целостности сети

Разрыв сетевого кабеля происходит при его физическом разрыве или отсоединении одного из его концов. Возможна также ситуация, когда на одном или нескольких концах кабеля отсутствуют терминаторы, что приводит к отражению электрических сигналов в кабеле и прекращению функционирования сети. Сеть «падает». Сами по себе компьютеры в сети остаются полностью работоспособными, но до тех пор, пока сегмент разорван, они не могут взаимодействовать друг с другом.

Звезда

При топологии «звезда» все компьютеры с помощью сегментов кабеля подключаются к центральному компоненту, именуемому концентратором (hub). Сигналы от передающего компьютера поступают через концентратор ко всем остальным. Эта топология возникла на заре вычислительной техники, когда компьютеры были подключены к центральному, главному, компьютеру.

В сетях с топологией «звезда» подключение кабеля и управление конфигурацией сети централизованны. Но есть и недостаток: так как все компьютеры подключены к центральной точке, для больших сетей значительно увеличивается расход кабеля. К тому же, если центральный компонент выйдет из строя, нарушится работа всей сети. А если выйдет из строя только один компьютер (или кабель, соединяющий его с концентратором), то лишь этот компьютер не сможет передавать или принимать данные по сети. На остальные компьютеры в сети это не повлияет.

Кольцо

При топологии «кольцо» компьютеры подключаются к кабелю, замкнутому в кольцо. Поэтому у кабеля просто не может быть свободного конца, к которому надо подключать терминатор. Сигналы передаются по кольцу в одном направлении и проходят через каждый компьютер. В отличие от пассивной топологии «шина», здесь каждый компьютер выступает в роли репитера, усиливая сигналы и передавая их следующему компьютеру. Поэтому, если выйдет из строя один компьютер, прекращает функционировать вся сеть.

Передача маркера

Один из принципов передачи данных в кольцевой сети носит название передачи маркера. Суть его такова. Маркер последовательно, от одного компьютера к другому, передается до тех пор, пока его не получит тот, который «хочет» передать данные. Передающий компьютер изменяет маркер, помещает электронный адрес в данные и посылает их по кольцу.

Данные проходят через каждый компьютер, пока не окажутся у того, чей адрес совпадает с адресом получателя, указанным в данных. После этого принимающий компьютер посылает передающему сообщение, где подтверждает факт приёма данных. Получим подтверждение, передающий компьютер создаёт новый маркер и возвращает его в сеть. На первый взгляд кажется, что передача маркера отнимает много времени, однако на самом деле маркер передвигается практически со скоростью света. В кольце диаметром 200 м маркер может циркулировать с частотой 10 000 оборотов в секунду.

При проектировании сетей связи имеет достаточно большое значение выбор топологии, то есть, соединения узлов как физического, так и информационного. Надежность и скорость передачи данных во многом определяет эффективность всей системы в целом. В то же время, излишества, делают только хуже и повышают затраты, а посему все предприятие становится нерентабельным. Как следствие, большинство проектировщиков ищут наиболее оптимальные варианты, совмещая различные типы топологий.

Виды сетей

 

Многотерминальные системы — прообраз сети

Терминалы, выйдя за пределы вычислительного центра, рассредоточились по всему предприятию. Многотерминальный режим использовался не только в системах разделения времени, но и в системах пакетной обработки. При этом не только оператор, но и все пользователи получали возможность формировать свои задания и управлять их выполнением со своего терминала. Такие операционные системы получили название систем удаленного ввода заданий.

Терминальные комплексы могли располагаться на большом расстоянии от процессорных стоек, соединяясь с ними с помощью различных глобальных связей — модемных соединений телефонных сетей или выделенных каналов. Для поддержки удаленной работы терминалов в операционных системах появились специальные программные модули, реализующие различные (в то время, как правило, нестандартные) протоколы связи. Такие вычислительные системы с удаленными терминалами сохраняя централизованный характер обработки данных, в какой-то степени являлись прообразом современных компьютерных сетей, а соответствующее системное программное обеспечение — прообразом сетевых операционных систем.

Многотерминальные централизованные системы уже имели все внешние признаки локальных вычислительных сетей, однако по существу ими не являлись, так как сохраняли сущность централизованной обработки данных автономно работающего компьютера.

Особую роль играл так называемый мэйнфрейм (от англ. mainframe) — высокопроизводительный компьютер со значительным объемом оперативной и внешней памяти, нередко многопроцессорный, выполняющий функции главного компьютера вычислительного центра или сервера в развитых локальных вычислительных сетях с большим числом периферийных компьютеров и терминалов (например, локальные сети больших организаций, фирм, учебных заведений; международные платежные системы). Обычно относится к классу больших или миникомпьютеров. Первоначально (в 1950-х) мейнфреймом («главной стойкой») называлась металлическая стойка с центральным процессором. Сегодня термин часто используется как синоним большого компьютера.

До начала 1980-х, когда наступила эра персональных компьютеров, мейнфреймы занимали господствующее положение на компьютерном рынке. Сегодня они используются, главным образом, в корпоративных вычислительных комплексах, на оборонных предприятиях, в научно-исследовательских институтах, в финансовой и промышленной сферах.

Крупным недостатком мейнфреймов в восьмидесятые годы стала их несовместимость с идеологией открытых систем и распределенной обработки данных, которые заложены в основу архитектуры персональных компьютеров. Однако в самом начале 90-х годов IBM, совершив эволюционный скачок, начала выпускать мейнфреймы с новой концептуальной архитектурой ESA/390 (Enterprise System Architecture — архитектура систем предприятия). ESA/390 предлагает широкий спектр функциональных возможностей для использования мейнфрейма в качестве центра интеграции неоднородного вычислительного комплекса, причем в рамках такого комплекса возможна совместная работа со всеми альтернативными системами.

Лидирующие позиции на рынке мейнфреймов всегда занимала фирма IBM. Мейнфреймы выпускают также компании Unisys и Amdahl. В середине 90-х годов IBM добилась крупных коммерческих успехов на рынке мейнфреймов. Несмотря на высокую стоимость новых машин IBM ES/9000 (в среднем около 1 млн долларов), их нельзя было купить без очереди, а прибыль от их продаж ежегодно составляла 3-4 млрд. долларов.

Рядовой пользователь работу за терминалом мэйнфрейма воспринимал примерно так же, как сейчас воспринимает работу за подключенным к сети персональным компьютером. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него создавалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент и почти сразу же получить результат. (Некоторые далекие от вычислительной техники пользователи даже были уверены, что все вычисления выполняются внутри их дисплея.)

Глобальные сети

Разработка средств и методов передачи информации на большие расстояния сделала возможным появление глобальных сетей.

Глобальная сеть — это объединение компьютеров, расположенных на большом расстоянии, для общего использования мировых информационных ресурсов.

Теоретические работы по созданию концепций сетевого взаимодействия велись почти с момента появления вычислительных машин, значимые практические результаты по объединению компьютеров в сети были получены лишь в конце 60-х, когда с помощью глобальных связей и техники коммутации пакетов удалось реализовать взаимодействие машин класса мэйнфреймов и суперкомпьютеров. Эти дорогостоящие компьютеры хранили уникальные данные и программы, обмен которыми позволил повысить эффективность их использования.

Но еще до реализации связей "компьютер-компьютер", была решена более простая задача — организация связи "удаленный терминал-компьютер". Терминалы, находящиеся от компьютера на расстоянии многих сотен, а то и тысяч километров, соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса супер-ЭВМ.

И только потом были разработаны средства обмена данными между компьютерами в автоматическом режиме. На основе этого механизма в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными, сетевые службы.

В 1969 году министерство обороны США инициировало работы по объединению в общую сеть суперкомпьютеров оборонных и научно-исследовательских центров. Эта сеть, получившая название ARPANET послужила отправной точкой для создания первой и самой известной ныне глобальной сети — Internet. Сеть ARPANET объединяла компьютеры разных типов, работавшие под управлением различных ОС с дополнительными модулями, реализующими коммуникационные протоколы, общие для всех компьютеров сети. Такие ОС можно считать первыми сетевыми операционными системами.

Сетевые ОС в отличие от многотерминальных позволяли не только рассредоточить пользователей, но и организовать распределенное хранение и обработку данных между несколькими компьютерами, связанными электрическими связями. Любая сетевая операционная система, с одной стороны, выполняет все функции локальной операционной системы, а с другой стороны, обладает некоторыми дополнительными средствами, позволяющими ей взаимодействовать по сети с операционными системами других компьютеров. Программные модули, реализующие сетевые функции, появлялись в операционных системах постепенно, по мере развития сетевых технологий, аппаратной базы компьютеров и возникновения новых задач, требующих сетевой обработки.

В 1974 году компания IBM объявила о создании собственной сетевой архитектуры для своих мэйнфреймов, получившей название SNA (System Network Architecture, системная сетевая архитектура). В это же время в Европе активно велись работы по созданию и стандартизации сетей X.25.

Таким образом, хронологически первыми появились глобальные сети (Wide Area Networks, WAN), то есть сети, объединяющие территориально рассредоточенные компьютеры, возможно, находящиеся в различных городах и странах. Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи и концепции современных вычислительных сетей, такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов и маршрутизация пакетов в составных сетях.

Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN. Достоинством сетей с коммутацией каналов является их распространенность, что характерно особенно для аналоговых телефонных сетей. В последнее время сети ISDN во многих странах также стали также доступны корпоративному пользователю, а в России это утверждение относится пока только к крупным городам.

Известным недостатком аналоговых телефонных сетей является низкое качество составного канала, которое объясняется использованием телефонных коммутаторов старевших моделей, работающих по принципу частотного уплотнения каналов (FDM-технологии). На такие коммутаторы сильно воздействуют внешние помехи (например, грозовые разряды или работающие электродвигатели), которые трудно отличить от полезного сигнала. Правда, в аналоговых телефонных сетях все чаще используются цифровые АТС, которые между собой передают голос в цифровой форме. Аналоговым в таких сетях остается только абонентское окончание. Чем больше цифровых АТС в телефонной сети, тем выше качество канала, однако до полного вытеснения АТС, работающих по принципу FDM-коммутации, в нашей стране еще далеко. Кроме качества каналов, аналоговые телефонные сети также обладают таким недостатком, как большое время установления соединения, особенно при импульсном способе набора номера, характерного для нашей страны.

Телефонные сети, полностью построенные на цифровых коммутаторах, и сети ISDN свободны от многих недостатков традиционных аналоговых телефонных сетей. Они предоставляют пользователям высококачественные линии связи, а время установления соединения в сетях ISDN существенно сокращено.

Однако даже при качественных каналах связи, которые могут обеспечить сети с коммутацией каналов, для построения корпоративных глобальных связей эти сети могут оказаться экономически неэффективными. Так как в таких сетях пользователи платят не за объем переданного графика, а за время соединения, то при графике с большими пульсациями и, соответственно, большими паузами между пакетами оплата идет во многом не за передачу, а за ее отсутствие. Это прямое следствие плохой приспособленности метода коммутации каналов для соединения компьютеров.

Тем не менее, при подключении массовых абонентов к корпоративной сети, например сотрудников предприятия, работающих дома, телефонная сеть оказывается единственным подходящим видом глобальной службы из соображений доступности и стоимости (при небольшом времени связи удаленного сотрудника с корпоративной сетью).

В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире, помимо сетей Х.25 он включает такие технологии, как Frame relay, SMDS и АТМ. Кроме этих технологий, разработанных специально для глобальных компьютерных сетей, можно воспользоваться услугами территориальных сетей ТСР/IР, которые доступны сегодня как в виде недорогой и очень распространенной сети Internet качество транспортных услуг которой пока практически не регламентируется и оставляет желать лучшего, так и в виде коммерческих глобальных сетей ТСР/1Р, изолированных от Internet и предоставляемых в аренду телекоммуникационными компаниями.

Высокая стоимость протяженных каналов передачи данных и сложность простого повышения скорости передачи данных за счет прокладки дополнительных волоконно-оптических жил обуславливает чрезвычайно экономное отношение к пропускной способности канала в глобальных сетях. Для нормальной работы приложений в таких условиях требуется применение методов обеспечения качества обслуживания (Quality of Service, QoS). Поэтому в большинстве технологий, специально разработанных для глобальных сетей передачи данных - Frame Relay, ATM, - механизмы QoS являются встроенными. Основной движущей силой развития сети являются приложения. В сети появляются новые высокоскоростные технологии. Перенос в компьютерные сети новых видов трафика, например IP-телефонии, аудио- и видеовещиния, привел к появлению новых требований, связанных с обеспечением низкого уровня задержек пакетов, поддержкой групповой доставки пакетов и т.д.

Локальная вычислительная сеть (ЛВС, локальная сеть, англ. Local Area Network, LAN) — компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояния более 12 500 км (космические станции и орбитальные центры). Несмотря на такие расстояния, подобные сети всё равно относят к локальным.

Типы серверов в локальных сетях

При этом каждый из серверов может быть реализован как на отдельном компьютере, так и в небольших по объему ЛВС, быть совмещенным на одном компьютере с каким-либо другим сервером. Север и ОС работают как единое целое. Без ОС даже самый мощный сервер представляет собой груду железа. ОС позволяет реализовать потенциал аппаратных ресурсов сервера. К наиболее распространенным сетевым ОС следует отнести:

ü Novell NetWare 4.0 и выше;

ü OS/2;

ü Unix;

ü Windows NT 4.0 и выше.

Последняя обеспечивает симметричную многопроцессорную обработку (системные задачи распределяются между всеми доступными процессорами), поддерживает множество аппаратных платформ ( Pentium, R4000, RISE и Digit Alpha), длина имени файла до 225 байт, размер файла и диска - до 16 эксабайт (миллиард гигабайт).

Преимущества сетей на основе сервера

Сравнения двух основных типов ЛВС проведем с точки зрения возможности разделения ресурсов, защиты данных, возможности резервного копирования, избыточности и аппаратной обеспеченности. Рассмотрим каждое из этих направлений более подробно.

Разделение ресурсов. Сервер спроектирован так, чтобы предоставить доступ к множеству файлов и принтеров, обеспечивая при этом высокую производительность и защиту. Администрирование и управление доступом к данным осуществляется централизованно, что обеспечивает их поиск и поддержку. (Так, в Widows NT разделение каталогов осуществляется через File Manager. Чтобы разрешить совместное использование каталога, надо выделить его в меню Disk и выбрать команду Shave As).

Защита. Это основной аргумент при выборе ЛВС на основе сервера. Проблемой безопасности может заниматься один администратор: он формирует политику безопасности и применяет ее в отношении каждого пользователя сети. Если в одноранговых сетях возможна защита только на уровне ресурсов, то в ЛВС на основе сервера основной является защита на уровне пользователя.

Резервное копирование данных. Поскольку важная информация расположена централизованно, т. е. сосредоточена на одном или нескольких серверах, то нетрудно обеспечить ее регулярное резервное копирование, что повысить надежность ее сохранения.

Избыточность. Благодаря избыточным системам данные на любом сервере могут дублироваться в реальном времени. Поэтому в случае повреждения основной области хранения данных информация не будет потеряна, так как легко воспользоваться ее резервной копией.

Аппаратное обеспечение. Так как PC не выполняет функций сервера, требования к его характеристикам зависят от потребностей самого пользователя. Он может иметь, по крайней мере, 486-й процессор и ОЗУ от 8 до 16 Мбайт.

Комбинированные сети

Существуют и комбинированные сети, сочетающие лучшие качества одноранговых сетей и сетей на основе сервера. Многие администраторы считают, что такая сеть наиболее полно удовлетворяет их запросы, т. к. в ней могут функционировать оба типа ОС.

Сетевые ОС на основе Novell NetWare или Windows NT Server в этом случае отвечают за совместное использование основных приложений и данных. На рабочих станциях ЛВС устанавливают Windows NT WorkStation или Windows 95/98, которые будут управлять доступом к ресурсам выделенного сервера и в то же время предоставлять в совместное использование свои жесткие диски, а по мере необходимости разрешать доступ и к своим данным:

Структура комбинированной локальной сети

Комбинированные сети - наиболее распространенный тип ЛВС, но для их правильной и надежной защиты необходимы определенные знания и навыки планирования. Одноранговые сети и сети на основе серверов объединяет общая цель - это разделение ресурсов и коллективное их использование. А вот различия между одноранговыми сетями и ЛВС с выделенными серверами существенно определяют:

ü требования к аппаратному обеспечению ЛВС;

ü способ поддержки пользователей.

Постепенно различия между локальными и глобальными типами сетевых технологий стали сглаживаться. Изолированные ранее локальные сети начали объединяться друг с другом, при этом в качестве связующей среды использовались глобальные сети. Тесная интеграция локальных и глобальных сетей привела к значительному взаимопроникновению соответствующих технологий.

Сближение в методах передачи данных происходит на платформе цифровой передачи данных по волоконно-оптическим линиям связи. Высокое качество цифровых каналов изменило требования к протоколам глобальных компьютерных сетей. Появились новые технологии глобальных сетей, такие как frame relay и АТМ. В этих сетях предполагается, что искажение битов происходит настолько редко, что ошибочный пакет выгоднее просто уничтожить, а все проблемы, связанные с его потерей, перепоручить программному обеспечению более высокого уровня, которое непосредственно не входит в состав сетей frame relay и АТМ.

Большой вклад в сближение локальных и глобальных сетей внесло доминирование протокола IP. Этот протокол сегодня используется поверх любых технологий локальных и глобальных сетей - Ethernet, Token Ring, ATM, frame relay - для создания из различных подсетей единой составной сети.

Компьютерные глобальные сети 90-х, работающие на основе скоростных цифровых каналов, существенно расширили набор своих услуг и догнали в этом отношении локальные сети. Стало возможным создание служб, работа которых связана с доставкой пользователю больших объемов информации в реальном времени - изображений, видеофильмов, голоса, в общем, всего того, что получило название мультимедийной информации. Наиболее яркий пример - гипертекстовая информационная служба World Wide Web, ставшая основным поставщиком информации в Интернете.

Одним из проявлений сближения локальных и глобальных сетей является появление сетей масштаба большого города, занимающих промежуточное положение между локальнами и глобальнами сетями. Городские сети или сети мегаполисов (Metropolitan Area Networks, MAN), предназначены для обслуживания территории крупного города. Современные сети типа MAN отличаются разнообразием услуг, позволяя своим клиентам объединять коммуникационное оборудование различного типа, в том числе и офисные АТС.

Интернет

Интернет (произносится англ. Internet) — всемирная система объединённых компьютерных сетей, построенная на использовании протокола IP и маршрутизации пакетов данных. Интернет образует глобальное информационное пространство, служит физической основой для Всемирной паутины и множества других систем (протоколов) передачи данных. Часто упоминается как «Всемирная сеть» и «Глобальная сеть».

В 1961 году Advanced Research Agensy (DARPA) по заданию министерства обороны США приступила к проекту по созданию экспериментальной сети передачи пакетов данных. Эта сеть, названная ARPANET, предназначалась первоначально для изучения методов обеспечения надежной связи между компьютерами различных типов.

В 1969 году министерство обороны утвердило ARPANET в качестве ведущей организации для исследований в области компьютерных сетей. Первым узлом новой сети стал UCLA - Центр испытаний сети, а вскоре к нему присоединились Станфордский исследовательский институт, UCSB - университет Санта-Барбары и университет Юта. Появился первый RFC(Request for Comments) В AT&T Lab была разработана операционная система UNIX.









Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.