Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







ПРИДНЕСТРОВСКОЙ МОЛДАВСКОЙ РЕСПУБЛИКИ





МИНИСТЕРСТВО ВНУТРЕННИХ ДЕЛ

ПРИДНЕСТРОВСКОЙ МОЛДАВСКОЙ РЕСПУБЛИКИ

ТИРАСПОЛЬСКИЙ ЮРИДИЧЕСКИЙ ИНСТИТУТ

Им. М.И. КУТУЗОВА

Кафедра оперативно-розыскной деятельности

 

 

ЛЕКЦИЯ

 

по дисциплине «Информатика и информационные технологии в профессиональной деятельности »

специальность 031001.65 - «Правоохранительная деятельность»

 

 

ТЕМА №2: «Технические средства информационных технологий»

 

 

Г. Тирасполь, 2014 г.


ТЕМА №2: «Технические средства информационных технологий»

 

ПЛАН:

Введение

1. История развития вычислительной техники. Поколения ЭВМ.

Основные характеристики ЭВМ.

3. Классификации ЭВМ.

4. Структурная организация ЭВМ. Принципы Неймана.

5. Базовая аппаратная конфигурация персонального компьютера.

Заключение

 

Литература:

1. Информатика и математика для юристов: учебник / под ред. С. Я. Казанцева, Н. М. Дубининой – М.: ЮНИТИ-ДАНА, 2012.

2. Информатика базовый курс. 2-е изд. / Под ред. С.В. Симоновича СПб.: Питер, 2011

3. Информационные технологии в юридической деятельности. / Под редакцией профессора П.У. Кузнецова – М.: Юрайт, 2013.

4. Информационные технологии: учебник для вузов. Б.Я. Советов, В.В. Целиховский. – М.: Высшая школа, 2009.

5. Основы правовой информатики (юридические и математические основы информатики): учебное пособие / С. Г. Чубукова, В. Д. Элькин; под ред. М. М. Рассолова. - Изд. 2-е, испр. и доп. - М.: Контракт: ИНФРА-М, 2009.

6. Могилев, А. В. Практикум по информатике: (учебное пособие) / А. В. Могилев, Н. И. Пак, Е.К. Хеннер; под ред. Е. К. Хеннера.- 4-е изд., стер. — М.: Академия, 2008.

7. Информационные технологии в юридической деятельности. / Згадзай О.Э. и др. - М.: Юнити-Дана, 2014.




ВВЕДЕНИЕ

Для правоохранительных органов характерен непрерывный поток текстовой и цифровой информации. Ее полнота, достоверность, оперативность обработки, анализа и использования становятся важнейшей проблемой повышения эффективности деятельности правоохранительных органов.

На всех уронах управления в системе МВД хранятся и циркулируют огромные объемы информации. В частности, (например в России) на областном уровне в органах внутренних дел может формироваться и храниться до 1 млн. документов, средний объем информационного банка данных регионального уровня составляет 3-4 млн. документов, а федерального уровня - до 50 млн.

Одним из основных путей решения проблемы хранения и обработки информации в реальном масштабе времени является применение в управленческой деятельности правоохранительных органов вычислительной техники.

Немаловажное значение имеет и программное обеспечение для правоохранительных органов. Это связано прежде всего с тем, что от качества и разнообразия программ общего и прикладного назначения во многом зависит эффективность применения компьютеров в практической деятельности органов внутренних дел.

В настоящее время в ОВД интенсивно оснащаются современной вычислительной техникой со специальным программным обеспечением, способной в сжатые сроки обрабатывать значительные объемы управленческой и оперативной информации.

 

Е поколение ЭВМ (с 1946 г. до середины 50-х годов ХХ в.).

Элементная база ЭВМ этого поколения - электронные вакуумные лампы.

К первому поколению ЭВМ, кроме отмеченных выше, относятся созданные советскими учеными и инженерами ламповые вычислительные машины БЭСМ-2, Стрела, М-2, М-3, Минск-1, Урал-1, Урал-2, М-20. Они были, в основном, ориентированы на решение научно-технических задач.

Что же представляли собой машины первого поколения? Характеристики ЭНИАКа: вес - 30 тонн, занимаемая площадь - 150 м.кв., 40 панелей управления, 18 000 электронных ламп, 1 500 реле, производительность - 5 000 операций в секунду.

Одна из первых вычислительных машин - ТРИДАГ - занимала площадь целого здания.

Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, позже - магнитные ленты и печатающие устройства.

Программы для этих машин писались на языке конкретной машины.

Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

Несмотря на указанные недостатки, машины первого поколения продемонстрировали широкие возможности выполнения вычислительных работ, в том числе в области космических исследований, ядерной физики, способствовали накоплению опыта по использованию ЭВМ в различных отраслях народного хозяйства.

Е поколение ЭВМ (с середины 60-х до середины 70-х гг. ХХ в.

В 1958 г. разработана и создана интегральная схема - новый вид электронных приборов. В ней на одном кусочке полупроводника собрана целая электронная схема.

Для 3-го поколения элементная база - интегральные схемы малой степени интеграции, где на миниатюрном кремниевом кристалле, размером примерно 1 см на 1 см, размещалось до 100 активных элементов. Отсюда и название - чип - от английского слова «кусочек», «обломок».

Первая ЭВМ на интегральных схемах была изготовлена уже в 1961 году. Она содержала 587 схем малой интеграции. А в следующем 1962 г. была выпущена первая серийная ЭВМ 3-го поколения. В полной мере развитие этого поколения относится к выше отмеченному проекту - разработке машин IBM-360.

СССР совместно со странами - членами СЭВ - в начале 70-х годов разработали и организовали серийное производство Единой Системы ЭВМ (ЕС ЭВМ) и Системы Малых ЭВМ (СМ ЭВМ) - машин третьего поколения на интегральных схемах.

В 1971 г. был создан первый микропроцессорный комплект 4004 - семейство из пяти дополняющих друг друга кристаллов. Главный чип имел размеры 3,8 на 2,8 мм и содержал 2 250 транзисторов. Первый микропроцессор был 4-разрядным, изготовлен на p-канальных МОП транзисторах и имел быстродействие порядка 50 000 операций в секунду. Уже к концу 70-хх гг. быстродействие микропроцессоров превысило миллион операций в секунду, степень интеграции - 200 000 транзисторов, разрядность достигла 32, что стало достаточным для решения подавляющего большинства задач даже в перспективе.

Е поколение ЭВМ

Для ЭВМ пятого поколения, которые разрабатываются пока в лабораторных условиях, элементная база основывается на сверхбольших интегральных схемах (СБИС) и на оптико-электронных элементах (лазеры, голография). Для оптических машин носителями энергии служат не электроны, а фотоны, что значительно повышает скорость передачи сигналов, поэтому быстродействие ЭВМ может достигнуть сотен миллионов операций в секунду.

Развитие идет также по пути "интеллектуализации" компьютеров, устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой.

Архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них — это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином "интеллектуальный интерфейс". Его задача — понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

Для преобразования и передачи оптических сигналов применяют лазеры, светоизлучающие диоды, световоды и различные фотоприемники.

 

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЭВМ

 

Электронная вычислительная машина (ЭВМ) представляет собой комплекс технических средств для автоматической обработки информации, представленной в цифровых кодах. В соответствии с заданной программой машина автоматически реализует требуемый вычислительный процесс. В настоящее время трудно назвать все те области человеческой деятельности, успех которых не был бы связан с применением ЭВМ. Такое широкое распространение ЭВМ объясняется способностью машины выполнять с недоступной для человека скоростью длинные последовательности операций, хранить большие объемы информации и выдавать результаты вычислений практически с любой необходимой точностью.

Вычислительные машиныхарактеризуются следующими свойствами:

1) Быстродействие ЭВМ определяется числом операций, выполняемых машиной в единицу времени. Ввиду того что такие операции, как сложение, умножение и др., выполняются за различное время, обычно указывают быстродействие для выполнения каждой из операций или используют среднее быстродействие. Высокое быстродействие ЭВМ обусловлено применением современных электронных элементов, а также полной автоматизацией вычислительного процесса. Электронные элементы позволяют производить вычисления в тысячи раз быстрее, чем механические или электромеханические элементы. Быстродействие современных ЭВМ достигает сотен тысяч и миллионы арифметических и логических операций в секунду.

2) Точность решения задач на ЭВМ (помимо точности самого метода решения) определяется количеством цифровых разрядов, отводимых для представления одного информационного слова. В большинстве ЭВМ обычно используют двоичную систему счисления, в которой каждый цифровой разряд соответствует одному двоичному знаку (0 или 1). Для повышения точности вычислений увеличивают разрядность машины, что влечет за собой в основном увеличение электронного оборудования ЭВМ. Современные ЭВМ оперируют с восьми - двенадцати разрядными десятичными числами, что вполне достаточно для решения большинства задач. Если же требуется большая точность, то такую задачу можно решать с удвоенной, утроенной и т.п. длиной разрядной сетки.

3) Универсальность применения ЭВМ заключается в возможности решения разнообразных задач на одной и той же машине . для этого необходимо только изменить программу решения и ввести в машину новые исходные данные. Усложнение задачи, решаемой на ЭВМ, не ведет к усложнению самой машины, а только увеличивает время ее решения и соответственно время на подготовку и программирование.

4) Каждая ЭВМ характеризуется объемом внутренней оперативной памяти для хранения программ и данных с высокой скоростью доступа к этой памяти. Объем внутренней памяти, т.е. количество ячеек для одновременного хранения информации и время доступа к ней, во многих случаях имеет исключительно большое значение. Например, при решении экономических задач, информационно-поисковых, научных и др., когда обрабатываются большие массивы информации, важны именно большой объем оперативной памяти и высокая скорость доступа к этой информации.

Современные ЭВМ характеризуются также большим объемом внешней памяти на магнитных и оптических дисках (HDD, CD, DVD) и лентах. Эта память менее быстродействующая, чем оперативная, но имеет значительно больший объем. Ее используют для хранения программ и данных, которые находятся в очереди на решение, а также для хранения программных средств самой ЭВМ (кроме тех, которые должны постоянно находиться в оперативной памяти), архивов и др.

5) Программными средствами, или программным (математическим) обеспечением, ЭВМ принято считать совокупность программ, имеющихся на ЭВМ и позволяющих организовать автоматическое выполнение вычислительного процесса, обеспечить доступ пользователей к ЭВМ, выполнить ряд вспомогательных работ при вводе-выводе и переписи информации с одних носителей на другие, а также обеспечить рациональный режим работы машины.

6) Габаритные размеры- величина внешних размеров как отдельных модулей или составных частей машины, так и всего комплекса в целом.

7) Энергопотребление- электрическая мощность, потребляемая от источника питания, как отдельными модулями, так и всей ЭВМ.

8) Стоимость - цена отдельных модулей, всего комплекса ЭВМ, расходных материалов.

9) Дизайн- внешний вид, форма, окраска, удобство эксплуатации и др.

 

 

КЛАССИФИКАЦИИ ЭВМ

 

Существует достаточно много систем классификации компьютеров. Различают различные классификации ЭВМ по назначению, конструктивным особенностям и структурному построению:

Классификация по назначению

Классификация по назначению — один из наиболее ранних методов классификации ЭВМ.

Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ, мини-ЭВМ, микро-ЭВМ и персональные компьютеры.

Большие ЭВМ. Это самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainframe). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ достигает многих десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп.

 

Рис. Структура современного вычислительного центра на базе большой ЭВМ

 

Центральный процессор — основной блок ЭВМ, в котором непосредственно и происходит обработка данных и вычисление результатов. Обычно центральный процессор представляет собой несколько стоек аппаратуры и размещается в отдельном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу.

Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

В качестве примера рассмотрим характеристики многоцелевого массово-параллельного суперкомпьютера среднего класса Intel Pentium Pro 200. Этот компьютер содержит 9200 процессоров Pentium Pro на 200 Мгц, в сумме (теоретически) обеспечивающих производительность 1,34 Терафлоп (1 Терафлоп равен 1012 операций с плавающей точкой в секунду), имеет 537 Гбайт памяти и диски ёмкостью 2,25 Терабайт. Система весит 44 тонны (кондиционеры для неё — целых 300 тонн) и потребляет мощность 850 кВт.

Мини-ЭВМ.От больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшей производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной.

Мини-ЭВМ часто применяют для управления производственными процессами. Например, в механическом цехе компьютер может поддерживать ритмичность подачи заготовок, узлов и комплектующих на рабочие места; управлять гибкими автоматизированными линиями и промышленными роботами; собирать информацию с инструментальных постов технического контроля и сигнализировать о необходимости замены изношенных инструментов и приспособлений; готовить данные для станков с числовым программным управлением; а также своевременно информировать цеховые и заводские службы о необходимости выполнения мероприятий по переналадке оборудования.

Тот же компьютер может сочетать управление производством с другими задачами. Например, он может помогать экономистам в осуществлении контроля над себестоимостью продукции, нормировщикам в оптимизации времени технологических операций, конструкторам в автоматизации проектирования станочных приспособлений, бухгалтерии в осуществлении учета первичных документов и подготовки регулярных отчетов для налоговых органов. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Микро-ЭВМ.Компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких человек. Необходимые системные программы обычно покупают вместе с микро-ЭВМ, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах.

Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры. К таким задачам, например, относится предварительная подготовка данных.

Персональные компьютеры (ПК).Эта категория компьютеров получила особо бурное развитие в течение последних двадцати лет. Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места. Как правило, с персональным компьютером работает один человек. Несмотря на свои небольшие размеры и относительно невысокую стоимость, современные персональные компьютеры обладают немалой производительностью.

Многие современные персональные модели превосходят большие ЭВМ 70-х годов, мини-ЭВМ 80-х годов и микро-ЭВМ первой половины 90-х годов. Персональный компьютер (Personal Computer, PC) вполне способен удовлетворить большинство потребностей малых предприятий и отдельных лиц.

Особенно широкую популярность персональные компьютеры получили после 1995 года в связи с бурным развитием Интернета. Персонального компьютера вполне достаточно для использования всемирной сети в качестве источника научной, справочной, учебной, культурной и развлекательной информации. Персональные компьютеры являются также удобным средством автоматизации учебного процесса по любым дисциплинам, средством организации дистанционного (заочного) обучения и средством организации досуга. Они вносят большой вклад не только в производственные, но и в социальные отношения. Их нередко используют для организации надомной трудовой деятельности, что особенно важно в условиях ограниченной трудозанятости.

До последнего времени модели персональных компьютеров условно рассматривали в двух категориях: бытовые ПК и профессиональные ПК. Бытовые модели, как правило, имели меньшую производительность, но в них были приняты особые меры для работы с цветной графикой и звуком, чего не требовалось для профессиональных моделей. В связи с достигнутым в последние годы резким удешевлением средств вычислительной техники границы между профессиональными и бытовыми моделями в значительной степени стерлись, и сегодня в качестве бытовых нередко используют высокопроизводительные профессиональные модели, а профессиональные модели, в свою очередь, комплектуют устройствами для воспроизведения мультимедийной информации, что ранее было характерно для бытовых устройств.

ПЕРСОНАЛЬНОГО КОМПЬЮТЕРА

 

Персональный компьютер — универсальная техническая система. Его конфигурацию (состав оборудования) можно гибко изменять по мере необходимости. Тем не менее, существует понятие базовой конфигурации, которую считают типовой. В таком комплекте компьютер обычно поставляется. Понятие базовой конфигурации может меняться.

В настоящее время в базовой конфигурации рассматривают четыре устройства:

• системный блок;

• монитор;

• клавиатура;

• мышь.

Системный блок

Системный блок представляет собой основной узел, внутри которого установлены наиболее важные компоненты. Устройства, находящиеся внутри системного блока, называют внутренними, а устройства, подключаемые к нему снаружи, — внешними.

Внешние дополнительные устройства, предназначенные для ввода, вывода и длительного хранения данных, также называют периферийными.

По внешнему виду системные блоки различаются формой корпуса. Корпуса персональных компьютеров выпускают в горизонтальном (desktop) и вертикальном (tower) исполнении. Корпуса, имеющие вертикальное исполнение, различают по габаритам: полноразмерный (big tower), среднеразмерный (midi tower) и малоразмерный (mini tower). Среди корпусов, имеющих горизонтальное исполнение, выделяют плоские и особо плоские (slim).

Кроме формы, для корпуса важен параметр, называемый форм-фактором. От него зависят требования к размещаемым устройствам. Прежним стандартом корпуса персональных компьютеров был форм-фактор AT, в настоящее время в основном используются корпуса форм-фактора АТХ. Форм-фактор корпуса должен быть обязательно согласован с форм-фактором главной (системной) платы компьютера, так называемой материнской платы.

В системном блоке размещаются следующие устройства:

· процессор (это основной рабочий компонент компьютера, который выполняет арифметические и логические операции, заданные программой, управляет вычислительным процессом и координирует работу всех устройств компьютера);

· материнская плата (сложная многослойная печатная плата, являющаяся основой построения вычислительной системы (базой));

· оперативная память (быстрое запоминающее устройство не очень большого объёма, непосредственно связанное с процессором и предназначенное для записи, считывания и хранения выполняемых программ и данных);

· накопитель на жёстких магнитных дисках(устройство предназначенное для постоянного хранения информации, используемой при работе с компьютером);

· блок питания (источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений);

· видеокарта (электронная плата, которая обрабатывает видеоданные (текст и графику) и управляет работой дисплея. Большинство оснащаются специализированным графическим сопроцессором, увеличивающие эффективность видеосистемы. Их применение освобождает центральный процессор от большого объёма операций с видеоданными, так как акселераторы самостоятельно вычисляют, какие пиксели отображать на экране и каковы их цвета);

· аудиокарта(специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона, наушников, динамиков, встроенного синтезатора и другого оборудования);

· сетевая карта(устройство позволяющее подключить ПК в единую компьютерную сеть);

· накопитель CD-ROM/DWD-ROM(устройство для ввода-вывода данных с внешних носителей информации);

· соединительные провода (специальный набор проводов связывающий устройства внутри системного блока с материнской платой);

· система охлаждения (набор средств для отвода тепла от нагревающихся в процессе работы компьютерных компонентов);

 

Монитор

Монитор — устройство визуального представления данных. Это не единственно возможное, но главное устройство вывода. Его основными потребительскими параметрами являются: тип, размер и шаг маски экрана, максимальная частота регенерации изображения, класс защиты.

Сейчас наиболее распространены мониторы двух основных типов на основе электронно-лучевой трубки (ЭЛТ) и плоские жидкокристаллические (ЖК).

Размер монитора измеряется между противоположными углами видимой части экрана по диагонали. Единица измерения — дюймы. Стандартные размеры: 14"; 15"; 17"; 19"; 20"; 21". В настоящее время наиболее универсальными являются мониторы размером 17- 19 (ЖК) и 15 - 17 дюймов (ЭЛТ), а для операций с графикой желательны мониторы размером 19-24 дюйм (ЭЛТ).

Частота регенерации (обновления) изображения показывает, сколько раз в течение секунды монитор может полностью сменить изображение (поэтому ее также называют частотой кадров). Этот параметр зависит не только от монитора, но и от свойств и настроек видеоадаптера, хотя предельные возможности определяет все-таки монитор.

Частоту регенерации изображения измеряют в герцах (Гц). Чем она выше, тем четче и устойчивее изображение, тем меньше утомление глаз, тем больше времени можно работать с компьютером непрерывно.

При частоте регенерации порядка 60 Гц мелкое мерцание изображения может быть заметно невооруженным глазом. Сегодня такое значение считается недопустимым. Для мониторов минимальным считают значение 75 Гц, нормативным — 85 Гц и комфортным — 100 Гц и более.

Класс защиты монитора определяется стандартом, которому соответствует монитор с точки зрения требований техники безопасности. В настоящее время общепризнанными

считаются следующие международные стандарты: MPR-II, ТСО'92, ТСО-95у ТСО'99.

Большинством параметров изображения, полученного на экране монитора, можно управлять программно. Программные средства, предназначенные для этой цели, обычно входят в системный комплект программного обеспечения.

Клавиатура

Клавиатура — клавишное устройство управления персональным компьютером.

Служит для ввода алфавитно-цифровых (знаковых) данных, а также команд управления.

Комбинация монитора и клавиатуры обеспечивает простейший интерфейс пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее отклик.

Принцип действия.Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечение для начала работы с компьютером уже имеется в микросхеме ПЗУ в составе базовой системы ввода-вывода (BIOS), и потому компьютер реагирует на нажатия клавиш сразу после включения.

Состав клавиатуры.Стандартная клавиатура имеет более 100 клавиш, функционально распределенных по нескольким группам: Группа алфавитно-цифровых клавиш, Группа функциональных клавиш, Служебные клавиши, Клавиш управления курсором.

Средства настройки клавиатуры относятся к системным и обычно входят в состав операционной системы.

Мышь

Мышь— устройство управления манипуляторного типа. Представляет собой плоскую коробочку с двумя-тремя кнопками. Перемещение мыши по плоской поверхности синхронизировано с перемещением графического объекта (указателя мыши) на экране монитора.

Комбинация монитора и мыши обеспечивает наиболее современный тип интерфейса пользователя, который называется графическим. Пользователь наблюдает на экране графические объекты и элементы управления. С помощью мыши он изменяет свойства объектов и приводит в действие элементы управления компьютерной системой, а с помощью монитора получает от нее отклик в графическом виде.

Стандартная мышь имеет только две кнопки, хотя существуют нестандартные мыши с тремя кнопками. Сегодня наиболее распространены мыши, в которых роль третьей кнопки играет вращающееся колесико-регулятор. Функции дополнительных органов управления определяются тем программным обеспечением, которое поставляется вместе с устройством.

К числу регулируемых параметров мыши относятся: чувствительность (выражает величину перемещения указателя на экране при заданном линейном перемещении мыши), функции левой и правой кнопок, а также чувствительность к двойному нажатию (максимальный интервал времени, при котором два щелчка кнопкой мыши расцениваются как один двойной щелчок). Программные средства, предназначенные для этих регулировок, обычно входят в системный комплект программного обеспечения — мы рассмотрим их при изучении операционной системы.

 

 

ЗАКЛЮЧЕНИЕ

Сотрудники органов внутренних, используемые в своей работе вычислительную технику, должны знать аппаратное строение и возможности различных элементов компьютера. Это связано с тем, по мере развития науки и техники ЭВМ появляются и изменяются различные периферийные устройства, которые повышают качество обработки информации.

 

Майор милиции Крисько А.И.

 

 

МИНИСТЕРСТВО ВНУТРЕННИХ ДЕЛ

ПРИДНЕСТРОВСКОЙ МОЛДАВСКОЙ РЕСПУБЛИКИ









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2019 zdamsam.ru Размещенные материалы защищены законодательством РФ.