Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Общие теоретические основы информатики





ИНФОРМАТИКА

Тема 1

Общие теоретические основы информатики

Понятие информатики

Информатика (от фр. information – информация + automatique – автоматика) обладает широчайшим диапазоном применения. Основными направлениями этой научной дисциплины являются:

разработка вычислительных систем и программного обеспечения;

теория информации, которая изучает процессы, основанные на передаче, приеме, преобразовании и хранении информации;

методы, которые позволяют создавать программы для решения задач, требующих определенных интеллектуальных усилий при использовании их человеком (логический вывод, понимание речи, визуальное восприятие и др.);

системный анализ, состоящий в изучении назначения проектируемой системы и в определении требований, которым она должна соответствовать;

методы анимации, машинной графики, средства мультимедиа;

телекоммуникационные средства (глобальные компьютерные сети);

различные приложения, которые используются в производстве, науке, образовании, медицине, торговле, сельском хозяйстве и др.

Чаще всего считают, что информатика состоит из двух видов средств:

1) технических – аппаратуры компьютеров;

2) программных – всего разнообразия существующих компьютерных программ.

Иногда выделяют еще одну основную ветвь – алгоритмические средства.

В современном мире роль информатики огромна. Она охватывает не только сферу материального производства, но и интеллектуальную, духовную стороны жизни. Увеличение объемов производства компьютерной техники, развитие информационных сетей, появление новых информационных технологий значительно влияют на все сферы общества: производство, науку, образование, медицину, культуру и т. д.

Понятие информации

Слово «информация» в переводе с латинского означает сведения, разъяснения, изложение.

Информацией называются сведения об объектах и явлениях окружающего мира, их свойствах, характеристиках и состоянии, воспринимаемые информационными системами. Информация является характеристикой не сообщения, а соотношения между сообщением и его анализатором. Если отсутствует потребитель, хотя бы потенциальный, говорить об информации не имеет смысла.

В информатике под информацией понимают некоторую последовательность символических обозначений (букв, цифр, образов и звуков и т. п.), которые несут смысловую нагрузку и представлены в понятном для компьютера виде. Подобный новый символ в такой последовательности символов увеличивает информационный объем сообщения.

Система кодирования информации

Кодирование информации применяют для унификации формы представления данных, которые относятся кразличным типам, в целях автоматизации работы с информацией.

Кодирование – это выражение данных одного типа через данные другого типа. Например, естественные человеческие языки можно рассматривать как системы кодирования понятий для выражения мыслей посредством речи, к тому же и азбуки представляют собой системы кодирования компонентов языка с помощью графических символов.

В вычислительной технике применяется двоичное кодирование. Основой этой системы кодирования является представление данных через последовательность двух знаков: 0 и 1. Данные знаки называются двоичными цифрами (binary digit), или сокращенно bit (бит). Одним битом могут быть закодированы два понятия: 0 или 1 (да или нет, истина или ложь и т. п.). Двумя битами возможно выразить четыре различных понятия, а тремя – закодировать восемь различных значений.

Наименьшая единица кодирования информации в вычислительной технике после бита – байт. Его связь с битом отражает следующее отношение: 1 байт = 8 бит = 1 символ.

Обычно одним байтом кодируется один символ текстовой информации. Исходя из этого для текстовых документов размер в байтах соответствует лексическому объему в символах.

Более крупной единицей кодирования информации служит килобайт, связанный с байтом следующим соотношением: 1 Кб = 1024 байт.

Другими, более крупными, единицами кодирования информации являются символы, полученные с помощью добавления префиксов мега (Мб), гига (Гб), тера (Тб):

1 Мб = 1 048 580 байт;

1 Гб = 10 737 740 000 байт;

1 Тб = 1024 Гб.

Кодирование текстовой информации

Текстовую информацию кодируют двоичным кодом через обозначение каждого символа алфавита определенным целым числом. С помощью восьми двоичных разрядов возможно закодировать 256 различных символов. Данного количества символов достаточно для выражения всех символов английского и русского алфавитов.

В первые годы развития компьютерной техники трудности кодирования текстовой информации были вызваны отсутствием необходимых стандартов кодирования. В настоящее время, напротив, существующие трудности связаны с множеством одновременно действующих и зачастую противоречивых стандартов.

Для английского языка, который является неофициальным международным средством общения, эти трудности были решены. Институт стандартизации США выработал и ввел в обращение систему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США).

Для кодировки русского алфавита были разработаны несколько вариантов кодировок:

1) Windows-1251 – введена компанией Microsoft; с учетом широкого распространения операционных систем (ОС) и других программных продуктов этой компании в Российской Федерации она нашла широкое распространение;

2) КОИ-8 (Код Обмена Информацией, восьмизначный) – другая популярная кодировка российского алфавита, распространенная в компьютерных сетях на территории Российской Федерации и в российском секторе Интернет;

3) ISO (International Standard Organization – Международный институт стандартизации) – международный стандарт кодирования символов русского языка. На практике эта кодировка используется редко.

Ограниченный набор кодов (256) создает трудности для разработчиков единой системы кодирования текстовой информации. Вследствие этого было предложено кодировать символы не 8-разрядными двоичными числами, а числами с большим разрядом, что вызвало расширение диапазона возможных значений кодов. Система 16-разрядного кодирования символов называется универсальной – UNICODE. Шестнадцать разрядов позволяет обеспечить уникальные коды для 65 536 символов, что вполне достаточно для размещения в одной таблице символов большинства языков.

Несмотря на простоту предложенного подхода, практический переход на данную систему кодировки очень долго не мог осуществиться из-за недостатков ресурсов средств вычислительной техники, так как в системе кодирования UNICODE все текстовые документы становятся автоматически вдвое больше. В конце 1990-х гг. технические средства достигли необходимого уровня, начался постепенный перевод документов и программных средств на систему кодирования UNICODE.

Информационные технологии

Информация является одним из ценнейших ресурсов общества, поэтому процесс ее переработки, также каки материальных ресурсов (например, нефти, газа, полезных ископаемых и др.), можно воспринимать как своего рода технологию. В данном случае будут справедливы следующие определения.

Информационные ресурсы – это совокупность данных, представляющих ценность для предприятия (организации) и выступающих в качестве материальных ресурсов. К ним относятся тексты, знания, файлы с данными и т. д.

Информационные технологии – это совокупность методов, производственных процессов и программно-технических средств, которые объединены в технологическую цепочку. Эта цепочка обеспечивает сбор, хранение, обработку, вывод и распространение информации с целью снижения трудоемкости при использовании информационных ресурсов, а также повышения их надежности и оперативности.

По определению, принятому ЮНЕСКО, информационной технологией является совокупность взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, которые заняты обработкой и хранением информации, а также вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием.

Система методов и производственных процессов определяет приемы, принципы и мероприятия, регламентирующие проектирование и использование программно-технических средств для обработки данных. В зависимости от конкретных прикладных задач, требующих решения, применяют различные методы обработки данных и технические средства. Выделяют три класса информационных технологий, позволяющих работать с различного рода предметными областями:

1) глобальные, включающие в себя модели, методы и средства, формализующие и позволяющие использовать информационные ресурсы общества в целом;

2) базовые, предназначенные для определенной области применения;

3) конкретные, реализующие обработку определенных данных при решении функциональных задач пользователя (в частности, задач планирования, учета, анализа и т. д.).

Основной целью информационной технологии является производство и обработка информации для ее анализа и принятия на его основе соответствующего решения, которое предусматривает выполнение какого-либо действия.

Тема 2

Архитектура ЭВМ

Архитектура ЭВМ характеризуется качествами машины, влияющими на ее взаимодействие с пользователем. Архитектуpa определяет совокупность свойств машины и характеристик, которые необходимо знать программисту для эффективного использования ЭВМ при решении задач.

В свою очередь, архитектура определяет принципы организации вычислительной системы и функции центрального вычислительного устройства. Однако она не показывает то, как эти принципы реализуются внутри машины. Архитектура не зависит от программно недоступных ресурсов машины. Если у компьютеров одинаковая архитектура, то любая программа в машинном коде, написанная для одного компьютера, на другом компьютере работает аналогично с получением одинаковых результатов.

Для выполнения своих функций любой ЭВМ необходим минимальный набор функциональных блоков.

Архитектура сегодняшних компьютеров имеет классические черты, однако есть и некоторые отличия. В частности, запоминающее устройство (ЗУ) первых ЭВМ классической структуры подразделялось на два вида:

1) внутреннее, содержащее информацию, которая обрабатывалась в нем за некоторый момент времени;

2) внешнее, являющееся хранилищем всей информации, необходимой для работы компьютера.

В ходе технического прогресса число уровней в иерархии памяти компьютеров увеличивалось.

Арифметико-логическое устройство и устройство управления образуют единый блок, называемый центральным процессором. Перечень устройств для ввода и вывода данных включает в себя различные накопители на магнитных, оптических и магнитооптических дисках, сканеры, клавиатуру, мышь, джойстик, принтеры, графопостроители и т. д. Структура современного ПК содержит две основные части: центральную и периферийную, при этом к центральной части принято относить центральный процессор и внутреннюю память.

Центральным процессором (ЦП) называется устройство, обрабатывающее данные и осуществляющее программное управление этим процессом. Центральный процессор состоит из АЛУ, УУ, иногда и собственной памяти процессора; он чаще всего выполняется в виде большой интегральной схемы и носит название микропроцессора.

Внутренняя память – это устройство, предназначенное для хранения информации в специальном закодированном виде.

Оперативное запоминающее устройство, или оперативная память (ОП), – это ЦП, взаимодействующий с внутренним ЗУ. Оперативная память используется для приема, хранения и выдачи всей информации, которая требуется для выполнения операций в ЦП.

Внешние запоминающие устройства необходимы для хранения больших объемов информации, не использующейся в данный момент времени процессором. К ним относятся: накопители на магнитных дисках, накопители на магнитных лентах, накопители на оптических и магнитооптических дисках.

Виртуальной памятью является совокупность ОП, ВЗУ и комплекса программно-аппаратных средств.

Конфигурация ЭВМ– это определенный состав ее устройств с учетом их особенностей.

Операцией ввода называется передача информации от периферийных устройств в центральные, операцией вывода – процесс передачи информации из центральных устройств в периферийные.

Интерфейсы представляют собой сопряжения, осуществляющие в вычислительной технике связь между устройствами ПК.

Тема 3

Микропроцессоры

Центральный процессор – неотъемлемая часть любой ЭВМ. Обычно это большая интегральная схема, представляющая собой кремниевый кристалл в пластмассовом, керамическом или металлокерамическом корпусе, на котором расположены выводы для приема и выдачи электрических сигналов. Функции ЦП выполняют микропроцессоры. Они осуществляют вычисления, пересылку данных между внутренними регистрами и управление ходом вычислительного процесса. Микропроцессор взаимодействует непосредственно с ОП и контроллерами системной платы. Главные носители информации внутри него – регистры.

Неотъемлемой частью микропроцессора являются:

АЛУ, состоящее из нескольких блоков, например блока обработки целых чисел и блока обработки чисел с плавающей точкой;

устройство управления, которое вырабатывает управляющие сигналы для выполнения команд;

внутренние регистры.

В основу работы каждого блока микропроцессора положен принцип конвейера, который заключается в следующем. Реализация каждой машинной команды разбивается на отдельные этапы, а выполнение следующей команды программы может быть начато до завершения предыдущей. Поэтому микропроцессор выполняет одновременно несколько следующих друг за другом команд программы, и время на выполнение блока команд уменьшается в несколько раз. Суперскалярной называют архитектуру, в основу работы которой положен принцип конвейера. Это возможно при наличии в микропроцессоре нескольких блоков обработки.

В программе могут встречаться команды передачи управления, выполнение которых зависит от результатов выполнения предшествующих команд. В современных микропроцессорах при использовании конвейерной архитектуры предусматриваются механизмы предсказания переходов. Другими словами, если в очереди команд появилась команда условного перехода, то предсказывается, какая команда будет выполняться следующей до определения признака перехода. Выбранная ветвь программы выполняется в конвейере, однако запись результата осуществляется только после вычисления признака перехода, тогда, когда переход выбран верно. В случае неправильного выбора ветви программы микропроцессор возвращается назад и выполняет правильные операции в соответствии с вычисленным признаком перехода.

Важными характеристиками микропроцессора являются:

его быстродействие, которое в значительной степени зависит от тактовой частоты микропроцессора;

архитектура микропроцессора, определяющая, какие данные он может обрабатывать, какие машинные инструкции входят в набор выполняемых им команд, как происходит обработка данных, каков объем внутренней памяти микропроцессора.

В состав микропроцессора может входить кэш-память (сверхоперативная), обеспечивающая более быструю передачу информации, чем ОП. Различают кэш-память первого уровня, которая обычно встроена в тот же кристалл и работает на одинаковой с микропроцессором частоте; кэш-память второго уровня – общая, когда команды и данные хранятся вместе, и разделенная, когда они хранятся в разных местах.

При решении сложных математических и физических задач в некоторых компьютерах предусмотрено использование специального устройства, которое называетсяматематическим сопроцессором. Это устройство представляет собой специализированную интегральную микросхему, работающую во взаимодействии с ЦП и предназначенную для выполнения математических операций с плавающей точкой.

Накопители информации

Прибор, предназначенный для длительного хранения значительных объемов информации, называется накопителем или внешним запоминающим устройством, устройством массовой памяти.

В зависимости от размещения в ПК различают накопители:

1) внешние, которые находятся вне системного блока и имеют собственный корпус, источник питания, а также выключатель и кабель;

2) внутренние, которые находятся на монтажной стойке системного блока компьютера. Данные устройства не обладают собственным корпусом и подключаются к контроллеру накопителей и источнику питания ПК.

По способу записи различают устройства произвольного и последовательного доступа.

К основным типам накопителей на дисках относятся:

накопители на гибких магнитных дисках;

накопители на жестких магнитных дисках (НЖМД), винчестер;

накопители на сменных компакт-дисках.

В накопителях на гибких магнитных дисках {дискетах) запись информации производится по дорожкам, делящимся на отдельные секторы. Между этими секторами существуют межсекторные промежутки. В зависимости от типа устройства и носителя и способа разметки последнего подбираются число дорожек и секторов и размер сектора.

Принцип работы таких накопителей заключается в том, что дискета, которая устанавливается в накопитель, вращается со скоростью 300–360 об/мин, чем обеспечивается доступ к нужному сектору. Запись на диск специальной управляющей информации носит название форматирования.

Накопители на жестких магнитных дисках представляют собой несколько металлических дисков, которые размещены на одной оси и заключены в герметизированный металлический корпус. Перед использованием эти диски нужно отформатировать. На жестких дисках информация располагается на дорожках, а внутри дорожек – на секторах. Совокупность дорожек на пакете магнитных дисков с одинаковыми номерами называется цилиндром.

Среди основных характеристик НЖМД выделяют:

информационную емкость;

плотность записи;

число дорожек;

время доступа (миллисекунды);

наружные габаритные размеры;

накопители на перезаписываемых компакт-дисках;

накопители на сменных магнитных дисках большой емкости;

накопители на магнитооптических дисках.

Подобные накопители подключают к системной шине с помощью различного типа интерфейса, среди которых элементы соединения и вспомогательные схемы управления, нужные для соединения устройств.

Накопители на сменных компакт-дисках применяются при использовании систем мультимедиа. Эти накопители (CD-ROM) приспособлены для считывания информации с компакт-дисков, вмещающих до 700 Мб. Запись на подобные диски осуществляется единожды с помощью специального оборудования.

Накопители на перезаписываемых компакт-дисках CD-RW, в отличие от накопителей на СБ^дисках, позволяют применять многократную перезапись.

Накопители на сменных магнитных дисках большой емкости предназначены для записи на сменный диск до 200 Мб информации и более.

Накопители на магнитооптических дисках используют оригинальную схему чтения-записи информации, обеспечивающую высокую информационную емкость носителей и надежность хранения записанной информации. Запись на эти носители осуществляется долговременно, а считывание достаточно быстро.

Устройства для записи и чтения цифровой информации на кассету с магнитной лентой называются стримерами. Они являются накопителями на магнитной ленте. Их используют для резервного архивирования информации. Среди положительных качеств таких записей большие объемы хранимой информации и низкая стоимость хранения данных.

Видеоконтроллеры и мониторы

Устройства, осуществляющие отображение информации на экране монитора, называются видеоадаптерами, или видеоконтроллерами. Видеоконтроллер – это плата расширения, обеспечивающая формирование изображения на экране монитора с использованием информации, которая передается от процессора.

Видеоконтроллеры подключают к ПК с помощью специальных локальных шин PCI или AGP. Интерфейс AGP применяется для ускорения обмена данными между процессором и видеоплатой. Многие видеоплаты рассчитаны на подключение к материнской плате через разъем AGP.

Информация отображается в текстовом или графическом режиме. В текстовом режиме используется посимвольное изображение данных на экране монитора, и данные изображения хранятся в ПЗУ. Изображения после включения питания компьютера перезаписываются из ПЗУ в ОП. При работе в графическом режиме применяется поточечное отображение информации на экране, при этом каждая точка экрана моделируется рядом битов, которые характеризуют цвет каждой из изображаемых точек. В режиме VGA каждая точка задается последовательностью из четырех бит, поэтому каждая точка может отображаться в одном из 16 = 24возможных цветов. Моделирование графического экрана можно осуществить разными наборами точек, как по вертикали, так и горизонтали.

Современные видеоадаптеры носят название графических ускорителей, так как они имеют специальные микросхемы, позволяющие ускорить обработку больших массивов видеоданных. Также данные графические ускорители называют акселераторами, они обладают своим специализированным микропроцессором и памятью. Важен объем этой памяти, так как в ней формируется полное графическое поточечное изображение экрана. В процессе своей работы видеоадаптер применяет собственную память, но не оперативную.

Однако для качественного воспроизведения изображения недостаточно иметь видеопамять необходимого объема. Важно, чтобы монитор мог обеспечивать вывод в режимах с высоким разрешением и чтобы программное обеспечение, которое задает формирование изображения, могло поддерживать соответствующий видеорежим.

В настольных компьютерах применяются мониторы на электронно-лучевых трубках, жидкокристаллические мониторы (LCD) и реже плазменные мониторы.

При работе в графических средах следует использовать мониторы с диагональю экрана не менее 15–17 дюймов. Среди основных параметров мониторов можно выделить:

максимальное разрешение;

длину диагонали;

расстояние между пикселями;

частоту кадровой развертки;

степень соответствия стандартам экологической безопасности.

Изображение считается более качественным, если расстояние между пикселями минимально, а частота кадровой развертки высока. При частоте не менее 75 Гц обеспечивается уровень комфортности изображения для глаза. Идеальной частотой развертки считается частота 110 Гц, при которой изображение воспринимается абсолютно неподвижным. Частота кадровой развертки не является постоянной величиной, т. е. при работе с большей разрешающей способностью один и тот же монитор использует меньшую частоту. На качество изображения влияет и вид применяемого видеоадаптера, так как недорогие модели могут не поддерживать соответствующую частоту.

В персональных компьютерах используются LCD– и TFT-дисплеи, а также дисплеи с двойным сканированием экрана. Дисплеи TFT наиболее перспективные, но достаточно дорогие. Разрешающая способность TFT-дисплеев составляет 640x480, а в более дорогих портативных ПК – 800x600 точек и реже 1024x768.

Устройства ввода информации

Основным стандартным устройством ввода информации в ПК является клавиатура. В ее корпусе присутствуют датчики клавиш, схемы дешифрации и микроконтроллер. Каждая клавиша соответствует определенному порядковому номеру. При надавливании на клавишу информация об этом передается процессору в виде соответствующего кода. Данный код интерпретируется драйвером – специальной программой, принимающей вводимые с клавиатуры символы.

На клавиатуре присутствуют клавиши, которые не посылают процессору никакого кода и используются для переключения состояния специальных признаков статуса клавиатуры.

Для экономии места в портативных и карманных ПК используются клавиатуры с небольшим числом клавиш.

Расположение клавиш на клавиатуре соответствует стандарту латинских печатающих машинок.

Координатные манипуляторы – это устройства покоординатного ввода. К ним относятся мыши, трекболы и пойнтеры.

Мышь подключают к компьютеру через последовательный порт. При перемещении мыши информация о виде данного перемещения передается драйверу, который изменяет местоположение курсора мыши на экране. Благодаря этому можно сообщать прикладной программе текущие значения его координат. Мышь играет особую роль при работе с графической информацией в графических редакторах, системах автоматизированного проектирования. Чаще всего используются левая и правая кнопки мыши. Обычно программы отслеживают одно– и двукратное нажатие левой клавиши мыши, а также однократное нажатие правой.

Трекболом называют шар, встроенный в клавиатуру, который отличается от мыши тем, его не нужно перемещать по рабочей поверхности.

Пойнтер является аналогом джойстика и размещается на клавиатуре.

Трекболы и пойнтеры чаще всего применяются в портативных компьютерах, а в карманных компьютерах в качестве устройства покоординатного ввода используется сенсорный экран.

Сканерами называют устройства ввода графической информации в компьютер. Различают ручные, планшетные и рулонные сканеры; черно-белые и цветные.

Используя ручной сканер, необходимо перемещать его вдоль поверхности листа, с которого снимается изображение. Отдельные элементы изображения можно вводить по частям и совмещать их в необходимой последовательности, применяя специальные программы.

Планшетные сканеры отличаются простотой в использовании, большей производительностью, чем ручные, и дороговизной. При работе с такими сканерами книгу в развернутом виде помещают на планшет сканера, и он самостоятельно считывает весь лист целиком. Данные сканеры имеют высокую разрешающую способность, благодаря чему их используют для ввода в ПК фотографий и сложных иллюстраций.

Рулонные сканеры также являются простыми в использовании и предназначены для непрерывного считывания информации с рулонных носителей, например, при анализе экспериментальных данных.

Сканеры можно разделить на черно-белые и цветные. Черно-белые сканеры в основном применяются для сканирования текстовой информации, а цветные – для графической.

Дигитайзеры – это устройства поточечного координатного ввода графических изображений, которые используются в системах автоматического проектирования, компьютерной графике и анимации. Данный прибор позволяет с большой точностью ввести сложные изображения, такие, как чертежи, карты и др.

По сборке дигитайзер является планшетом, содержащим рабочую плоскость, с нанесенной на нее координатной сеткой. Он имеет панель управления и специальное световое перо, соединенное с планшетом. С компьютером дигитайзер соединяется кабелем через порт.

Тема 4

Операционные системы

Операционной системой называется целый ряд управляющих программ, которые используются в качестве интерфейса между компонентами ПК и обеспечивают наиболее эффективную реализацию ресурсов ЭВМ. Операционная система является основой системной программы, загружаемой при включении питания компьютера.

К основным функциям ОС относятся:

получение от пользователя ПК команд или заданий;

принятие и применение программных запросов на запуск и остановку других программ;

загрузка в ОП подходящих для исполнения программ;

защита программ от взаимного действия друг на друга, обеспечение сохранности данных и др.

По видам пользовательского интерфейса (набору приемов, обеспечивающих взаимодействие пользователей ПК с его приложениями) различают следующие ОС:

а) командный интерфейс – выдача на экран монитора системного приглашения для ввода команд с клавиатуры (например, ОС MS-DOS);

б) интерфейс WIMP (или графический интерфейс – графическое представление образов, которые хранятся на жестком диске (например, ОС Windows различных версий);

в) интерфейс SILK (Speech Image Language Knowledge) – использование речевых команд для взаимодействия пользователя ПК и приложений. Данная разновидность ОС в настоящий момент находится в стадии своего развития.

Согласно режиму обработки задач выделяют следующие ОС:

а) обеспечивающие однопрограммный режим, т. е. способ организации вычислений, при котором в один момент времени они способны выполнять только одну задачу (например, MS-DOS);

б) работающие в мультипрограммном режиме, когда при организации вычисленией на однопроцессорной машине создается видимость выполнения нескольких программ.

Отличие между мультипрограммным и мультизадачным режимами состоит в том, что в мультипрограммном режиме происходит параллельное выполнение нескольких приложений, при этом пользователю не нужно заботиться об организации их работы, данные функции на себя берет ОС. При мультизадачном режиме параллельное выполнение и взаимодействие приложений должны обеспечивать прикладные программисты.

В соответствии с поддержкой многопользовательского режима ОС подразделяют:

а) на однопользовательские (MS-DOS, ранние версии Windows и OS/2);

б) многопользовательские (сетевые) (Windows NT, Windows 2000, Unix).

Основным отличием многопользовательских ОС от однопользовательских ОС является наличие средств защиты информации каждого пользователя от незаконного доступа других пользователей.

Тема 5

Эволюция компьютерных сетей

Концепция вычислительных сетей представляет собой логический результат эволюции компьютерных технологий. Первые компьютеры 1950-х гг. были большими, громоздкими и дорогими. Их основным предназначением являлось небольшое число избранных операций. Данные компьютеры не применялись для интерактивной работы пользователя, а использовались в режиме пакетной обработки.

Системы пакетной обработки обычно строились на базе мейнфрейма, который является мощным и надежным компьютером универсального назначения. Пользователи готовили перфокарты, содержащие данные и команды программ, и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер и на следующий день отдавали пользователям результаты. При этом одна неправильно набитая карта могла привести как минимум к суточной задержке.

Для пользователей был бы намного удобней интерактивный режим работы, который подразумевает возможность оперативно руководить процессом обработки данных с терминала. Однако на этом этапе именно пакетный режим являлся самым эффективным режимом использования вычислительной мощности, так как он позволял выполнить в единицу времени больше пользовательских задач, чем любые другие режимы. Во главе угла находилась эффективность работы самого дорогого устройства вычислительной машины, которым являлся процессора, в ущерб эффективности работы использующих его специалистов.

В начале 1960-х гг. затраты на производство процессоров уменьшились и появились новые способы организации вычислительного процесса, позволяющие учесть интересы пользователей. Началось развитие интерактивных многотерминальных систем разделения времени. В данных системах на компьютере работали сразу несколько пользователей. Каждый из них получал в распоряжение терминал, который помогал ему производить общение с компьютером. При этом время реакции вычислительной системы было достаточно мало для того, чтобы пользователь не замечал параллельную работу с компьютером других пользователей. Поделив таким образом компьютер, пользователи могли за сравнительно небольшую плату обладать преимуществами компьютеризации.

Терминалы, при выходе за пределы вычислительного центра, были рассредоточены по всему предприятию. Несмотря на то что вычислительная мощность оставалась полностью централизованной, многие операции, например ввод и вывод данных, стали распределенными. Данные многотерминальные централизованные системы внешне стали очень похожи на локальные вычислительные сети. На самом деле каждый пользователь воспринимал работу за терминалом мейнфрейма приблизительно так же, как сейчас работу за подключенным к сети ПК. Он имел доступ к общим файлам и периферийным устройствам и при этом был убежден в единоличном владении компьютером. Это было вызвано тем, что пользователь мог запустить необходимую ему программу в любой момент и почти сразу же получить результат.

Таким образом, многотерминальные системы, работающие в режиме разделения времени, явились первым шагом на пути создания локальных вычислительных сетей. Однако до появления локальных сетей необходимо было еще преодолеть большой путь, так как многотерминальные системы, хотя и имели внешние черты распределенных систем, все еще сохраняли централизованный характер обработки информации, и потребность предприятий в создании локальных сетей к данному моменту времени еще не созрела. Это объяснялось тем, что в одном здании просто нечего было объединять в сеть. Высокая стоимость вычислительной техники не давала возможности предприятиям приобретать несколько компьютеров. В данный период был справедлив так называемый закон Гроша, эмпирически отражающий уровень технологии того времени. По этому закону производительность компьютера была пропорциональна квадрату его стоимости, следовательно, за одну и туже сумму было выгоднее купить одну мощную машину, чем две менее мощных, так как их суммарная мощность оказывалась намного ниже мощности дорогой машины.

Однако потребность в соединении компьютеров, находившихся на большом расстоянии друг от друга, к этому времени вполне назрела. Разработка компьютерных сетей началась с решения более простой задачи – доступа к компьютеру с терминалов, удаленных от него на многие сотни или даже тысячи километров. Терминалы соединялись с компьютерами посредством телефонных сетей через модемы. Такие сети позволяли многочисленным пользователям осуществлять удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. После этого появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер использовались и удаленные связи типа компьютер-компьютер. Компьютеры смогли обмениваться данными в автоматическом режиме, что и представляет собой базовый механизм любой вычислительной сети. На основе данного механизма в первых сетях была организована служба обмена файлами, синхронизация баз данных, электронной почты и других, которые в настоящее время стали традиционными сетевыми службами.

Итак, хронологически первыми были разработаны и применены глобальные вычислительные сети. Именно при построении глобальных сетей были предложены и отработаны почти все базовые идеи и концепции существующих вычислительных сетей, например многоуровневое построение коммуникационных протоколов, технология коммутации пакетов, маршрутизация пакетов в составных сетях.

В 1970-х гг. наблюдался технологический прорыв в сфере производства компьютерных компонентов, что выразилось в появлении БИС. Их небольшая стоимость и огромные функциональные возможности позволили создать мини-компьютеры, которые стали реальными конкурентами мейнфреймов. Закон Гроша перестал действовать, так как десять мини-компьютеров были способны выполнять некоторые задачи намного быстрее одного мейнфрейма, а стоила такая мини-<







ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Живите по правилу: МАЛО ЛИ ЧТО НА СВЕТЕ СУЩЕСТВУЕТ? Я неслучайно подчеркиваю, что место в голове ограничено, а информации вокруг много, и что ваше право...

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем...

Система охраняемых территорий в США Изучение особо охраняемых природных территорий(ООПТ) США представляет особый интерес по многим причинам...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2023 zdamsam.ru Размещенные материалы защищены законодательством РФ.