Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Взаимное пересечение плоскостей общего положения





Если плоскости общего положения заданы следами, то естественно искать точки, определяющие прямую пересечения плоскостей, в точках пересечения одноименных следов плоскостей: прямая, проходящая через эти точки, является общей для обеих плоскостей, т.е. их линией пересечения (рис. 12.).

Рис. 12

Поэтому для построения проекций линии пересечения плоскостейα и β

(рис.102) надо:

1) найти точку M′ в пересечении следов hoα и hoβ и точку N′′ в пересечении fоα и fоβ, а по ним – проекции M′′ и N′;

2) построить проекции искомой прямой M′′N′′ и M′N′.

Общий прием построения линии пересечения двух плоскостей заключается в том, что вводят вспомогательную плоскость и строят линии пересечения вспомогательной плоскости с двумя заданными, а в пересечении построенных линий находят общую точку двух плоскостей. Для нахождения второй общей точки построение повторяют с помощью еще одной вспомогательной плоскости.

На рисунке 13 дан пример построения линии пересечения двух плоскостей общего положения. Одна из плоскостей α задана двумя пересекающимися прямыми, а другая β – двумя параллельными прямыми.

Рис. 13

 

Для нахождения общих точек взяты две вспомогательные фронтально-проецирующие плоскости γ1 и γ 2 пересекающие каждую из плоскостей α и β. При пересечении плоскостей α и β с плоскостью γ1 образуются прямые (12) и (34), расположенные в плоскости γ1. В своем пересечении они определяют первую точку линии пересечения плоскостей α и β – точку N. Далее, с введением плоскости γ2, получены, в ее пересечении с плоскостями α и β, прямые (56) и (78). Эти прямые, расположенные в плоскости γ2, в своем пересечении определяют вторую точку, общую для плоскостей α и β – точку М. Строят точки M и N, сначала получив проекции N′, M′, а затем находят на следах fоγ1, fоγ2 проекции M′′, N′′. Этим определяются проекцииM′N′ и M′′N′′ искомой прямой пересечения плоскостей



α и β.

Построить линию пересечения двух плоскостей можно по точкам пересечения прямых линий одной плоскости с другой плоскостью.

Следовательно, надо уметь строить точку пересечения прямой линии с плоскостью общего положения (см. п. 5.3).

На рисунке 14 дан пример построения линии пересечения двух треугольников АВС и DEF.

Рис.14

 

Прямая MN построена по точкам пересечения стороны DF с треугольником АВС и стороны ВС с треугольником DFE. Вспомогательная фронтально-проецирующая плоскость α, проведенная через DF, пересекает треугольник АВС по прямой [1-2], дающей в пересечении с D′F′ точку М, являющуюся точкой пересечения прямой DF и треугольника АВС.

Проведенная через сторону ВС вспомогательная горизонтально-проецирующая плоскость β пересекает треугольник DEF по прямой [3-4], дающей в пересечении с ВС точку N, являющуюся точкой пересечения прямой ВС и треугольника DEF. Соединив одноименные проекции точек M и N получают искомую линию пересечения – MN. Далее определяется видимость сторон треугольников в проекциях по конкурирующим точкам.

Например, с помощью фронтально-конкурирующих точек 1 и 11, которые соответственно расположены на сторонах АВ и DF. Точка 1 расположена к наблюдателю ближе, чем точка 11, поэтому она закрывает собой эту точку и на фронтальной проекции точка – 11′′ будет невидимой и, следовательно, фронтальная проекция стороны DF так же невидимая на отрезке [1′′M′′].

С помощью горизонтально-конкурирующих точек 4 и 41, расположенных соответственно на сторонах DE и ВС определяется видимость их горизонтальных проекций. Точка 4 расположена выше, чем точка 41, поэтому горизонтальная проекция точки 4 будет видимой, а точки 41 невидимой. Следовательно, горизонтальная проекция стороны DE, на которой лежит точка 4, будет видимой, а горизонтальная проекция стороны ВС на отрезке (N′4′) – невидимой и т.д. (см. п. 5.3).

Контрольные вопросы

1. Из чего исходят при построении точки пересечения прямой с проецирующей плоскостью ?

2. В чем заключается построение линии пересечения двух плоскостей ?

3. В каком порядке выполняют действия при построении точки пересечения прямой с плоскостью общего положения?

4. Как строят линию пересечения двух плоскостей общего положения в общем случае?

 

Рекомендуемая литература

1. Фролов, С.А. Начертательная геометрия: Учебник. 3-е изд., перераб. и доп. – М.: ИНФРА, 2010. – 285 с.

1. Чекмарев А.А. Начертательная геометрия и черчение: Учеб.для студ. высш. учеб. Заведений. – 2 – е изд., перераб. и доп. – М.: Гуманит. изд. центр ВЛАДОС, 2005. – 471 с.: ил.

3. Гордон В.О., Семенцов-Огиевский М.А. Курс начертательной геометрии. М.: Высш. шк., 2009. – 272 с.:ил.

4. Петлина Т.П. Начертательная геометрия. Ортогональные проекции и их преобразование: Учеб.пособие (с примерами практического использования в курсовом и дипломном проектировании). – Самара: СамВен, 2005. – 168 с.


Лекция №6









ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

Что делать, если нет взаимности? А теперь спустимся с небес на землю. Приземлились? Продолжаем разговор...

Что вызывает тренды на фондовых и товарных рынках Объяснение теории грузового поезда Первые 17 лет моих рыночных исследований сводились к попыткам вычис­лить, когда этот...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.