Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Числовые характеристики вариационного ряда





Одной из основных числовых характеристик ряда распределения (вариационного ряда) является средняя арифметическая.

Существует две формулы расчета средней арифметической: простая и взвешенная.

Простую среднюю арифметическую обычно используют, когда данные наблюдения не сведены в вариационный ряд либо все частоты равны единице или одинаковы.

; (6.8)

где xi - i-е значение признака;

n - объем ряда (число наблюдений; число значений признака).

В том случае, если частоты отличны друг от друга, расчет производится по формуле средней арифметической взвешенной:

; (6.9)

где xi - i-е значение признака;

mi - частота i-го значения признака;

k - число значений признака (вариантов).

При расчете средней арифметической в качестве весов могут выступать и частости. Тогда формула расчета средней арифметической взвешенной примет следующий вид:

(6.10)

где xi - i-е значение признака;

wi - частость i-го значения признака;

k - число значений признака (вариантов).

Колеблемость изучаемого признака можно охарактеризовать с помощью различных показателей вариации. К числу основных показателей вариации относятся: дисперсия, среднее квадратическое отклонение, коэффициент вариации.

Дисперсию можно рассчитать по простой и взвешенной формуле.

Простая имеет вид:

. (6.11)

А взвешенная:

. (6.12)

Среднее квадратическое отклонение рассчитывается по формуле:

(6.13)

Коэффициент вариации рассчитывается по формуле:

. (6.14)

 


ВЫБОРОЧНЫЙ МЕТОД И СТАТИСТИЧЕСКОЕ ОЦЕНИВАНИЕ

7.1. Основные понятия и определения выборочного метода

Одно из популярных определений статистики говорит, что этонаука, позволяющая распространять выводы, сделанные на основе изучения части совокупности (случайной выборки), на всю совокупность (генеральную совокупность).В этом определении заключена сущность выборочного метода и его ведущая роль в статистике.



Все единицы совокупности, обладающие интересующими исследователя признаками, составляют генеральную совокупность.

Часть совокупности, случайным образом отобранная из генеральной совокупности – выборочная совокупность – выборка.[2]

Число единиц (элементов) статистической совокупности называется её объёмом. Объем генеральной совокупности обозначается N, а объем выборочной совокупности n. Если объем совокупности велик, то его полагают равным бесконечности.

Случайная выборка из n элементов - это такой отбор, при котором элементы извлекаются по одному из всей генеральной совокупности и каждый из них имеет равный шанс быть отобранным. Требование случайности обеспечивается отбором по таблицам случайных чисел или по жребию. Такая выборка называетсясобственно-случайной. Одним из примеров использования собственно-случайной выборки является проведение тиражей выигрышей денежно-вещевых лотерей, при которых обеспечивается равная возможность попадания в тираж любого но­мера лотерейного билета.

По способу отбора элементов различают два типа случайных выборок: собственно-случайная повторная выборка (схема возвращенного шара); собст­венно-случайнаябесповторная выборка (схема невозвращенного шара).

Выбор схемы отбора зависит от характера изучаемого объ­екта. Напомним, что при повторном отборе единица наблюдения после извлечения из генеральной совокупности регистрируется и вновь возвращается в генеральную совокупность, откуда опять может быть извлечена случайным образом. При бесповторном отборе отобранный элемент в выборку обратно не возвращается. Необходимо заметить, что независимо от способа организации выборки она должна представлять собой уменьшенную копию генеральной совокупности, то есть быть представительной (репрезентативной).

Статистическое оценивание

 

Пусть из генеральной совокупности извлекается выборка объема n, причем значение признака х1 наблюдается m1 раз, х2 m2 раз,..., хk наблюдается mk раз, - объем выборки.

Мы можем сопоставить каждому значению xi относительную частоту mi/n.

Статистическим распределением выборки называют перечень возможных значений признака xi и соответствующих ему частот или относительных частот (частостей) mi (wi).

Числовые характеристики генеральной совокупности, как правило неизвестные, (средняя, дисперсия и др.) называют параметрами генеральной совокупности(обозначают, например, или , ). Доля единиц, обладающих тем или иным признаком в генеральной совокупности, называется генеральной долей и обозначается р.

По данным выборки рассчитывают числовые характеристики, которые называютстатистиками(обозначают , или , , выборочная доля обозначается w). Статистики, получаемые по различным выборкам, как правило, отличаются друг от друга. Поэтому статистика, полученная из выборки, является только оценкой неизвестного параметра генеральной совокупности. Оценка параметра - определенная числовая характеристика, полученная из выборки. Когда оценка определяется одним числом, ее называют точечной оценкой.

В качестве точечных оценок параметров генеральной совокупности используются соответствующие выборочные характеристики. Теоретическое обоснование возможности использования этих выборочных оценок для суждений о характеристиках и свойствах генеральной совокупности дают закон больших чисел и центральная предельная теорема Ляпунова.

Выборочная средняя является точечной оценкой генеральной средней, т.е.

Генеральная дисперсия имеет 2 точечные оценки: - выборочная дисперсия; - исправленная выборочная дисперсия[3]. - исчисляется при , а - при . Причем в математической статистике доказывается, что

или (7.1)

При больших объемах выборки и практически совпадают.

Генеральное среднее квадратическое отклонение так же имеет 2 точечные оценки: - выборочное среднее квадратическое отклонение и - исправленное выборочное среднее квадратическое отклонение. используется для оценивания при , а для оценивания , при ;при этом , а .

Ошибки выборки

 

Поскольку выборочная совокупность представляет собой лишь часть генеральной совокупности, то вполне естественно, что выборочные характеристики не будут точно совпадать с соответствующими генеральными. Ошибка репрезентативности может быть представлена как разность между генеральными и выборочными характеристиками изучаемой совокупности: , либо .

Применительно к выборочному методу из теоремы Чебышева следует, что с вероятностью сколь угодно близкой к единице можно утверждать, что при достаточно большом объеме выборки и ограниченной дисперсии генеральной совокупности разность между выборочной средней и генеральной средней будет сколь угодно мала.

(7.2)

где - средняя по совокупности выбранных единиц,

- средняя по генеральной совокупности,

- среднее квадратическое отклонение в генеральной совокупности.

Запись показывает, что о величине расхождения между параметром и статистикой , можно судить лишь с определенной вероятностью, от которой зависит величина t.

Формула (7.2) устанавливает связь между пределом ошибки , гарантируемым с некоторой вероятностью Р, величиной tи средней ошибкой выборки .

Cогласно центральной предельной теореме Ляпунова выборочные распределения статистик (при n ³ 30) будут иметь нормальное распределение независимо от того, какое распределение имеет генеральная совокупность. Следовательно:

 

(7.3)

где Ф0(t) - функция Лапласа.

 

Значения вероятностей, соответствующие различным t, содержатся в специальных таблицах: при n ³ 30 - в таблице значений Ф0(t), а при n < 30 в таблице распределения t-Стьюдента. Неизвестное значение при расчете ошибки выборки заменяется

В зависимости от способа отбора средняя ошибка выборки определяется по разному:

Таблица 7.1









Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2018 zdamsam.ru Размещенные материалы защищены законодательством РФ.