Сдам Сам

ПОЛЕЗНОЕ


КАТЕГОРИИ







Особенности устройства и работы бесстыкового пути





 

Главный элемент бесстыкового пути — рельсовые плети — это рельсы длиной до 25 м, сваренные между собой на рельсосварочных предприятиях (РСП) в длину до 800 м, а затем на месте, при укладке в путь, соединенные друг с другом контактной сваркой с помощью передвижной рельсосварочной машины (ПРСМ). Максимальная длина рельсовой плети не ограничена. Укладка коротких плетей, длиной менее 800 м, нежелательна, поскольку такие плети требуют значительно больших расходов на содержание. На пути с плетями длиной менее 400 м расходы на текущее содержание превышают затраты на содержание звеньевой конструкции. На коротких плетях особенно трудно содержать рельсовые скрепления из-за продольных температурных перемещений на концевых участках. Эти перемещения в период эксплуатации существенно изменяют напряженно-деформированное состояние бесстыкового пути.

Бесстыковой путь, как и звеньевой, не должен подвергаться угону. Для этого промежуточные скрепления должны обеспечивать постоянное прижатие рельса к шпале. Наибольшее распространение на сети отечественных железных дорог на бесстыковом пути с железобетонными шпалами получило скрепление типа КБ; относительно реже используются скрепления типа ЖБР и АРС. Возможна укладка бесстыкового пути на деревянных шпалах, в том числе на малодеятельных участках с применением костыльного скрепления. В последнем случае противоугоны на каждой шпале устанавливаются с двух сторон — «в замок» (ТУ-1991). В процессе эксплуатации натяжение болтов скрепления ослабевает. При недостаточном внимании к содержанию скрепления (смазке и подтягиванию болтов) происходит ослабление прижатия рельса к шпале и начинается угон, который приводит к очень быстрому разрушению всей конструкции верхнего строения пути из-за перекоса и кантования шпал, смятия резьбы, изолирующих и упругих деталей. На угоняемых участках, в их начале возникают дополнительные растягивающие, а в конце — дополнительные сжимающие продольные силы. Первые в сумме с температурными силами могут привести к разрыву рельсовой нити; вторые — к выбросу рельсошпальной решетки. В связи с этим предотвращение и профилактика угона должны быть приоритетной целью устройства и содержания бесстыкового пути, так как допустить угон несоизмеримо легче, чем затем его устранить.



Рельсовые плети, если они не сварены между собой, то соединяются при отсутствии изолирующих стыков двумя или тремя парами рельсов длиной 12,5 м. Например, в России соединение двумя парами применено на Калининградской, Приволжской, Северо-Кавказской и Юго-Восточной железных дорогах, тремя — на всех остальных. Изолирующий стык, обеспечивающий сопротивление разрыву не менее 1,5 МН, располагают в середине второй пары рельсов. Высокопрочный клееболтовой изолирующий стык, имеющий сопротивление разрыву не менее 2,5 МН (АпАТэк), допускается вваривать в середину плети (без уравнительных рельсов). Устройство уравнительных пролетов предполагает достаточно частую (сезонную и эпизодическую) необходимость перезакрепления рельсовых плетей (так называемая разрядка напряжений). Практика показала, что при закреплении плетей при достаточно высокой температуре рельсов (в оптимальном температурном интервале) ни периодическое, ни эпизодическое перезакрепление, как правило, не требуется.

На уравнительных пролетах в холодное время года зазоры в стыках максимально увеличиваются, уже к середине или к концу зимы (январь, февраль). Зазоры зависят от продольной растягивающей силы, длительности ее действия, качества закрепления плетей на концевых 200-метровых участках и от начальной величины в момент закрепления рельсов. При раскрытии зазора зимой до опасной величины — больше конструктивного (22 мм), чтобы не допустить разрыва стыка, уравнительный рельс необходимо заменять на удлиненный. Такая дополнительная работа создает потенциальную опасность выброса пути весной при повышении температуры рельсов, если вовремя не заменить этот удлиненный рельс на нормальный. Чтобы не производить такие работы, при закреплении рельсовых плетей в оптимальном температурном интервале зазоры следует устанавливать нулевыми или близкими к ним.

Ежегодно болты скрепления на концевых 200-метровых участках следует подтягивать в конце лета или в начале осени при нулевых или близких к ним значениях зазоров в уравнительном пролете. На остальной части рельсовых плетей периодически болты подтягивать можно в любое время года. На участках бесстыкового пути, состоящих из коротких рельсовых плетей, предложенная выше мера трудно выполнима.

На бесстыковом пути немаловажно поддерживать нормальные размеры и состояние балластной призмы. Балласт, как правило, — щебеночный (может быть гравийный или асбестовый), должен плотно прилегать к шпалам, прежде всего по их нижней постели, что осуществляется с помощью подбивки при выправке пути. Плотное прилегание балласта обеспечивает стабильное положение рельсо-шпальной решетки в профиле, плане и в продольном направлении не менее чем на 80 %. Остальные 20 % сопротивления перемещениям во всех трех плоскостях обеспечивает щебень, находящийся в шпальных ящиках, на плече балластной призмы и на ее откосе.

Существует ошибочное представление о том, что размер плеча балластной призмы непосредственно оказывает решающее влияние на сопротивление сдвигу шпал поперек оси пути. Плечо необходимо, прежде всего, для предотвращения интенсивного отрясе-ния концов шпал, которое затем ведет к просадкам путевой решетки и значит к неплотному прилеганию балласта к нижней постели шпал. По длине шпал балласт следует подбивать и уплотнять на всей длине от концов, за исключением 60 см на их середине. Излишне плотное прилегание балласта к середине шпал ведет к более интенсивному отрясению их концов, а затем и к поперечному излому.

Железобетонные шпалы в отличие от деревянных имеют максимальные прогибы на концах (деревянные — в подрельсовом сечении). Эта особенность увеличивает интенсивность накопления остаточных деформаций в балласте. На железобетонных шпалах динамические силы, передаваемые на балласт (особенно в стыках), также значительно выше, чем на деревянных. Это обстоятельство позволяет железобетонные шпалы применять только на бесстыковом пути. Исторически сложилось так, что на отечественных железных дорогах звеньевой путь применяют на деревянных шпалах, а бесстыковой на железобетонных. Звеньевой путь на железобетонных шпалах применять нельзя, так как на такой конструкции без очередного ремонта не удастся избежать аварийного состояния за период примерно в 2 раза меньший, чем на бесстыковом пути.

Состояние земляного полотна оказывает значительное влияние на работу верхнего строения пути. Представление о том, что при любых болезнях земляного полотна нужно отказываться от применения бесстыкового пути, является ошибочным. При возникновении на больных участках просадок интенсивность их нарастания при отсутствии стыков будет меньше. Даже в случае резких просадок или сдвигов на звеньевом пути возникли бы углы (в стыках) более опасные для движения поездов, чем на бесстыковом.

Для обеспечения устойчивости рельсошпальной решетки при высоких температурах на бесстыковом пути необходимо на участках с больным земляным полотном иметь увеличенную температуру закрепления рельсовых плетей (может быть — выше оптимальной). Такую меру борьбы с осадками или сдвигами следует сочетать с лечением больного места, что обычно должно быть предусмотрено проектом капитального ремонта.

На участках бесстыкового пути не должно быть ограничений по показателям плана и профиля. Однако на кривых с малым радиусом, как и на звеньевом пути, возникают проблемы, связанные с боковым износом наружного рельса и сдвигом рельсошпальной решетки поперек оси под действием продольных температурных сил в рельсах и боковых сил от подвижного состава. В связи с этим на кривых с малыми радиусами рекомендуется проведение технико-экономического обоснования применения бесстыкового пути, в котором следует учесть необходимость в период между капитальными ремонтами проведение замены изношенных рельсов по наружной нити. Для уменьшения интенсивности бокового износа наружной нити следует предусмотреть применение рельсов повышенной износостойкости (Р65К) и лубрикацию. Наиболее эффективна автоматическая лубрикация гребней колес устройствами, смонтированными на локомотивах.

Бесстыковой путь должен укладываться на мостах и в тоннелях. На мостах в зависимости от длины и конструкции пролетных строений и мостового полотна рельсы по-разному крепятся на шпалах, мостовых брусьях или плитах. В проектах учитывается необходимость предотвращения нежелательных совместных действий температурных продольных сил и перемещений в рельсовых плетях и пролетных строениях. При использовании скреплений КД-65 или КБ-65 применяют подрезанные клеммы, которые не препятствуют продольным перемещениям рельсов. Концы рельсовых плетей выводят за пределы моста на расстояния от 50 до 100 м.

В тоннелях проблемой обычно является необходимость предупреждения коррозии рельсов и скреплений, а на выходе и входе в тоннель — снижение повышенной динамики воздействия подвижного состава из-за резкого изменения упругости подрельсового основания. Подробные требования к конструкции и содержанию бесстыкового пути на мостах и в тоннелях даны в ТУ-2000.

Рельсовые плети для бесстыкового пути внеклассных линий и линий 1-го и 2-го классов должны свариваться электроконтактным способом из новых термоупрочненных рельсов Р65 1-й группы 1-го класса длиной 25 м без болтовых отверстий. Сварка плетей из новых рельсов длиной менее 25 м допускается с разрешения ЦП ОАО «РЖД». Для наружных рельсовых плетей кривых радиусом менее 500 м, где наблюдается интенсивный боковой износ головки рельса, должны применяться плети, сваренные преимущественно из рельсов повышенной износостойкости Р65К. При принятии мер по снижению интенсивности бокового износа головки рельса разрешается применять плети, сваренные из обычных термоупрочненных рельсов. Для линий 3-го класса плети могут быть сварены из старогодных рельсов Р65, прошедших комплексный ремонт в РСП. На мостах длиной более 25 м и в тоннелях применение старогодных рельсов в бесстыковом пути не допускается.

Длина вновь укладываемых сварных плетей в пути устанавливается проектом в зависимости от местных условий (расположения стрелочных переводов, мостов, тоннелей, кривых радиусом менее 350 м и т.д.) и должна быть, как правило, равной длине блок-участка, но не менее 400 м. На участках с тональными рельсовыми цепями, не требующими изолирующих стыков, или без тональных рельсовых цепей, имеющих рельсовые вставки, сваренные с высокопрочными изолирующими стыками с сопротивлением разрыву не менее 2,5 МН, допускается укладка плетей длиной до перегона.

С момента закрепления плетей при укладке в путь должен быть организован постоянный контроль за усилением затяжки гаек клеммных и закладных болтов и за продольными подвижками (угоном) плетей. На наличие угона указывают следы клемм на подошве рельсов, смещения подкладок по шпалам, взбугривание или неплотное прилегание балласта к боковым граням шпал и их перекос.

Контроль за угоном плетей осуществляется по смещениям контрольных сечений рельсовых плетей относительно «маячных» шпал. Эти сечения отмечают поперечными полосами шириной 10 мм, наносимыми светлой несмываемой краской на верх подошвы и шейку рельса внутри колеи в створе с боковой гранью подкладки скреплений КБ или с боковой гранью клеммы смещенной и прижатой к шпале без передачи давления на подошву рельса (ЖБР). По краске острым предметом наносится риска, по которой и производятся измерения продольных подвижек пути. В качестве «маячной» выбирается шпала, расположенная против пикетного столбика, около рельса окрашенная яркой краской. Чтобы шпала не смещалась, она должна быть всегда хорошо подбита, закладные болты на ней затянуты, типовые клеммы (на КБ) сняты или заменены клеммами с уменьшенной высотой ножек, а резиновые прокладки заменены на прокладки с низким коэффициентом трения (полиэтиленовые или др.).

__________________

Переходная криваяиспользуется для того, чтобы кривизна трассы изменялась плавно, а не скачкообразно в месте сопряжения элементов пути с разной кривизной (прямая и круговая кривая, круговые кривые разных радиусов или направленные в разные стороны в виде буквы S (обратные кривые)). При резком изменении кривизны пути поперечные силы, действующие на транспортное средство, изменяются скачкообразно, что приводит к повышенному динамическому воздействию на дорогу (путь) и экипажную часть, увеличивая их износ, повышает вероятность вылета за пределы дороги (схода с рельсов) или опрокидывания транспортного средства и вызывает дискомфорт у пассажиров.

Особенно важно устройство переходных кривых при высоких скоростях движения, применении путевых кривых малого радиуса, тяжёлом подвижном составе, пропуске длиннобазового подвижного состава (особенно ПС с длинной жёсткой базой, например паровозов).

Расчёт переходной кривой[править | править вики-текст]

Переходную кривую рассчитывают таким образом, чтобы в своём начале она имела кривизну, равную нулю (как у прямой, то есть начало кривой является точкой перегиба), а потом плавно меняла кривизну, в конце достигая значения, обратного радиусу круговой кривой (и наоборот для схода с виража). Поскольку переходная кривая является частью виража, на ней обеспечивается нарастающий поперечный уклон дорожного полотна (подъём внешнего рельса на рельсовых дорогах) до уровня, равного уклону на круговой кривой (и наоборот для схода с виража).

В качестве переходных чаще всего применяют следующие кривые:

· Клотоида — функция с переменной кривизной, растущей линейно пропорционально пройденному расстоянию. Наиболее часто применяемая кривая, стандартная для российских железных дорог и других стран бывшего СССР.

· Кубическая парабола иногда применяется для неответственных участков дороги как более простая для расчётов.

· Кардиоида — имеет определённые преимущества перед клотоидой при учёте подтормаживания транспортного средства на вираже.

· Венская дуга (нем.), лучше остальных учитывающая динамику движения транспортного средства[1]. В частности, она перед поворотом немного отклоняется в противоположную повороту сторону с одновременным нарастанием поперечного уклона, чтобы центр масс транспортного средства, возвышающийся над дорогой, вошел в кривую максимально гладко.

· 6.5 Возвышение наружного рельса в кривых

· При движении подвижного состава в кривых появляются дополнительные поперечные силы – центробежные, направляющие, боковые, рамные. Поэтому РК в кривых пути имеет следующие особенности: уширение колеи при радиусе кривой менее 350 м и укладка контррельсов в необходимых случаях, возвышение наружного рельса, устройство переходных кривых, укладка укороченных рельсов на внутренней нити, увеличение расстояний между смежными путями.

· Различают минимальную, оптимальную и максимальную ширину колеи в кривых. Минимально допустимая ширина колеи должна обеспечивать техническую возможность вписывания в кривые экипажей с большой жесткой базой. При оптимальной ширине колеи имеет место свободное вписывание массовых экипажей (вагонов). Максимальная ширина колеи определяется из условия надежного предотвращения провала колес подвижного состава внутрь колеи. В соответствии с приказом МПС РФ № 6 Ц от 6.03.96 установлен номинальный размер ширины колеи между внутренними гранями головок рельсов на прямых участках и в кривых радиусом 350 м и более 1520 мм, при радиусах 349-300 м -1530 мм (в т. ч. на железобетонных шпалах -1520 мм), при радиусах 299 м и менее -1535 мм.

· На участках ж. д., где комплексная замена рельсошпальной решетки не проводилась, допускается на участках пути с деревянными шпалами в прямых и кривых радиусом более 650 м номинальная ширина колеи 1524 мм. При этом на более крутых кривых принимается ширина колеи: при радиусе 649-450 м – 1530 мм, 449-350 м – 1535 мм, 349 и менее -1540 мм. Допускаемые отклонения от номинальных размеров не должны превышать по уширению +8 мм и по сужению – 4 мм при скорости 50 км/ч и более; соответственно +10 и -4 мм – при скорости менее 50 км/ч. При отводе уширения колеи уклон должен быть не круче 1 мм/м.

· При проходе подвижного состава по кривым возникают центробежные силы, стремящиеся опрокинуть экипаж наружу кривой. Это может произойти лишь в исключительных случаях. Однако центробежная сила неблагоприятно действует на пассажиров, вызывает боковое воздействие на путь, перераспределение вертикальных давлений на рельсы обеих нитей и перегруз наружной нити, что приводит к усиленному боковому износу рельсов и гребней колес. Кроме того, возможны раскантовка рельсов, уширение колеи или поперечный сдвиг рельсошпальной решетки, т. е. расстройство положения пути в плане. Во избежание указанных явлений устраивают возвышение наружной рельсовой нити над внутренней. Возвышение наружного рельса рассчитывается исходя из двух требований: обеспечения одинакового давления колес на наружную и внутреннюю рельсовые нити, а следовательно, одинакового вертикального износа обоих рельсов; обеспечения комфортности езды пассажиров, характеризуемой допускаемым непогашенным центробежным ускорением. По нормам МПС допускаемая величина непогашенного ускорения составляет для пассажирских поездов 0,7 м/с2 (в отдельных случаях с разрешения МПС – 1 м/с2), а для грузовых поездов – +0,3 м/с2. Возвышение наружного рельса устраивается в кривых радиусом 4000 м и менее. В основу расчета положено стремление обеспечить равенство поперечных составляющих центробежной силы и веса экипажа G, т. е. Lcosoc = Gsinа (рис. 6.5). Это достигается изменением угла наклона а расчетной плоскости к горизонту или возвышением наружного рельса.

· 5.1. Общие сведения о стрелочных переводах и глухих пересечениях

·

· Переход подвижного состава с одного пути на другой обеспечивают устройства по соединению и пересечению путей, относящихся к верхнему строению.Соединение путей друг с другом осуществляется стрелочными переводами, а пересечения путей – глухими пересечениями. В зависимости от назначения и условий соединения путей стрелочные переводы делятся на одиночные, двойные и перекрестные.

· Одиночные стрелочные переводы бывают обыкновенные, симметричные и несимметричные (криволинейные).

· Наибольшее распространение получили обыкновенные стрелочные переводы (рис. 5.1) – составляют более 95 % общего числа стрелочных переводов на станционных путях всех категорий.

·

·

·

· Рис. 5.1. Обыкновенный стрелочный перевод

·

· Одиночные симметричные стрелочные переводы (рис. 5.2) применяются при разветвлении основного пути на два под одинаковым углом α/2. Укладка симметричных стрелочных переводов сокращает длину горловины, благодаря меньшей длине остряков, крестовины и переводной кривой, и обеспечивает одинаковое сопротивление движению при отклонении вагонов в одну или другую сторону. Симметричные стрелочные переводы применяют в основном на подгорочных путях сортировочного парка.

·

· Рис. 5.2. Симметричный стрелочный перевод

·

· Глухие пересечения (рис. 5.3)устраивают в месте пересечения двух путей, когда не требуется обеспечивать переход подвижного состава с одного из этих путей на другой.

·

·

· Рис. 5.3. Глухое пересечение

·

· 5.2. Обыкновенный стрелочный перевод

· Обыкновенный стрелочный перевод служит для соединения двух путей и является наиболее востребованным соединением.

· Обыкновенный стрелочный перевод (рис. 5.5) состоит:

· · из стрелки, включающей два рамных рельса, два подвижных жесткосвязанных остряка и переводного механизма;

· · крестовиной части, состоящей из сердечника, двух усовиков и контррельсов;

· · соединительных рельсовых нитей, располагающихся между стрелкой и крестовинной частью;

· · переводных брусьев.

· Остряки предназначены для направления подвижного состава на прямой или боковой путь. Их соединяют друг с другом поперечными стрелочными тягами, с помощью которых один из них подводится вплотную к рамному рельсу, в то время как другой отводится от другого рамного рельса на расстояние, необходимое для свободного прохода гребней колес.

·

·

· Рис. 5.5. Основные элементы обыкновенного стрелочного перевода

·

· Перевод остряков из одного положения в другое осуществляется специальными стрелочными приводами через одну из тяг, а в пологих стрелочных переводах, остряки которых не имеют значительной длины, – через две тяги и более. Тонкая часть остряка называется острием, а другой его конец – корнем. Корневое крепление обеспечивает поворот остряков в горизонтальной плоскости и соединение с примыкающими к ним рельсам.

· Крестовина (рис. 5.6) состоит из сердечника 3, двух усовиков 1 и желобов 2. Она обеспечивает пересечение гребнем колес рельсовых головок, а контррельсы направляют гребни колес в соответствующие желоба при прохождении колесной пары по крестовине. Точка пересечения продолжения рабочих граней сердечника крестовины называется ее математическим центром, а самое узкое место между усовиками – горлом крестовины. Угол a, образуемый рабочими гранями сердечника, называется углом крестовины.

·

·

·

· Рис. 5.6. Схема крестовины: 1 – усовики; 2 – желоба; 3 – сердечник; 4 – хвост крестовины; МЦ – математический центр крестовины; К – ширина сердечника крестовины; l – длина сердечника крестовины; a – угол крестовины

·

· Соединительная часть перевода, лежащая между стрелкой и крестовиной, включает в себя прямой участок и переводную кривую. Радиус этой кривой зависит от угла крестовины: чем меньше угол, тем больше радиус. Переводы с меньшими углами крестовины допускают более высокие скорости движения поездов.

· Стрелочные переводы крепят с помощью специальных подкладок, шурупов и костылей к переводным брусьям или железобетонным плитам, которые укладывают на балластную призму.

· Схема обыкновенного стрелочного перевода в рельсовых нитяхи осях путейприведена на рис. 5.7.

·

·

·

· Рис. 5.7. Схема обыкновенного стрелочного перевода

·

· К основным размерам стрелочных переводов относятся, мм:

· Lп – полная длина перевода;

· m – расстояние от стыка рамного рельса до начала остряка;

· а0 – расстояние от начала остряка до центра перевода;

· а – расстояние от стыка рамного рельса до центра перевода:

· а = а0 + m, (5.1)

· b0 – расстояние от центра перевода до математического центра крестовины;

· q – расстояние от математического центра крестовины до ее торца;

· b – расстояние от центра перевода до торца крестовины:

· b = b0 + q, (5.2)

· е – ширина колеи;

· α – угол крестовины.

· Обыкновенные стрелочные переводы бывают правосторонними и левосторонними (рис. 5.8).

·

·

· Рис. 5.8. Левосторонний (а) и правосторонний (б) стрелочные переводы

·

· Обыкновенные стрелочные переводы различаются типом рельсов (Р75, Р65 и др.), конструкцией остряков (прямолинейные или криволинейные) и маркой крестовины, характеризующей ее угол. Марка крестовины М определяется

· , (5.3)

· где a – угол крестовины; N – целое число.

· На железных дорогах России используются обыкновенные стрелочные переводы с крестовинами марок 1/9, 1/11, 1/18, 1/22. Значения основных размеров стрелочных переводов типа Р65 и Р50 для марок 1/11 и 1/9 приведены в табл. 5.1.

· Таблица 5.1

· Основные размеры обыкновенных стрелочных переводов

·

·

· Стрелочные переводы, укладываемые на главных, приемоотправочных и прочих путях, принимаются в соответствии с типом рельсов для этих путей. Стрелочные переводы на главных путях, по которым проходят поезда со скоростью более 100 км/ч, а также одиночные переводы на путях приема и отправления пассажирских поездов (в местах отклонения этих поездов на боковой путь или следования с бокового пути) должны иметь крестовины не круче 1/11. При пропуске пассажирских поездов по прямому пути допускается укладка стрелочных переводов с крестовинами марки 1/9. На приемоотправочных путях грузового движения обыкновенные стрелочные переводы укладываются с крестовинами не круче 1/9, а симметричные не круче 1/6.

·

· 5.3. Соединения двух параллельных путей, стрелочные улицы

· Соединение двух параллельных путей может осуществляться с помощью конечных соединений (рис. 5.9) и съездов (рис. 5.10).

· Конечное соединение может быть несокращенным, под углом крестовины и сокращенным. Сокращенное соединение применяется для уменьшения его длины.

·

Рис. 5.9. Конечное соединение двух параллельных путей Рис. 5.10. Соединение путей с помощью съезда

·

· Съездымежду параллельными путями устраивают несокращенными – простыми, сокращенными и перекрестными.

Стрелочной улицей называется участок пути, на котором последовательно уложены стрелочные переводы, соединяющие группу параллельных путей. Это устройство позволяет перемещать подвижной состав на любой из соединяемых путей (рис. 5.11). В зависимости от схемы расположения стрелочных переводов и угла наклона к основному пути различают несколько видов стрелочных улиц.

Путевое хозяйство

[править | править вики-текст]

Материал из Википедии — свободной энциклопедии

Возле железнодорожной станции Царицыно в Москве

Путево́е хозя́йство — одна из основных отраслей железнодорожного транспорта, в которую входят железнодорожный путь со всеми сооружениями; объекты производственного, служебно-технического и культурно-бытового назначения; линейно-путевые, промышленные предприятия, обеспечивающие текущее содержание и ремонт пути; путе- и мостообследовательские, геофизические и нормативно-инструкторские станции; средства механизации ремонтно-путевых и других работ. На долю путевого хозяйства приходится более 50 процентов стоимости основных фондов железных дорог, пятая часть эксплуатационных расходов. В путевом хозяйстве занята шестая часть работников железнодорожного транспорта.

Содержание

[убрать]

· 1Решаемые задачи

· 2Основы путевого хозяйства

· 3Направления развития

· 4В России

· 5См. также

· 6Литература

Решаемые задачи[править | править вики-текст]

Основной задачей работников путевого хозяйства является обеспечение состояния пути, его сооружений и обустройств, гарантирующее бесперебойное и безопасное движение поездов с установленными скоростями. Достигается это текущим содержанием пути в пределах установленных норм и допусков на состояние основных устройств, своевременным выявлением и предупреждением неисправностей и расстройств пути, устранением причин, вызывающих эти неисправности, на основе систематического надзора и контроля за состоянием пути с помощью путеизмерительных и дефектоскопных средств, а также усилением и ремонтом железнодорожного пути, искусственных сооружений и земляного полотна.

Основы путевого хозяйства[править | править вики-текст]

Автомотриса АГД-1А
для путевого хозяйства

Автомотриса АДЭ-1
для дефектоскопии

Система ведения путевого хозяйства основывается на технических, технологических и организационных мероприятиях.

Технические основы включают в себя:

· типизацию верхнего строения пути, предусматривающую наиболее целесообразные сферы применения различных конструкций пути в зависимости от эксплуатационных условий

· классификацию путевых работ и их объёмов

· нормы периодичности ремонтов пути

· нормативы и требования к содержанию пути и его сооружений, а также к основным элементам верхнего строения

· техническую паспортизацию путевого хозяйства

Технологические основы содержат:

· типовые технологические процессы ремонта и планово-предупредительных работ при текущем содержании пути, устанавливающие последовательность выполнения отдельных операций с использованием машин и механизмов

· проекты организации работ

· типовые технически обоснованные нормы времени для учёта работ по ремонту и текущему содержанию пути

· технолого-нормировочные карты на производство работ

Организационные основы включают:

· планирование путевых работ и контроль за их выполнением

· производство ремонтных работ в «окнах» заданной продолжительности

· прогрессивную технологию путевых работ с использованием «технологической цепочки» машин, обеспечивающих высокий уровень механизации и максимальную выработку в «окне» или в промежутках между поездами

· систему контроля и оценки состояния пути с помощью путеизмерительных дефектоскопных средств

· дифференцированные нормы времени на текущее содержание пути и стрелочных переводов.

Направления развития[править | править вики-текст]

Рост грузооборота и пассажирооборота железнодорожного транспорта, повышение скоростей движения, нагрузок на ось и массы поездов существенно увеличивают эксплуатационную нагрузку путевых устройств. Усложняющиеся эксплуатационные условия требуют повышения эксплуатационной стойкости и надёжности пути, создания новых высокопроизводительныхпутевых машин, механизмов и инструмента, эффективного их использования путём совершенствования основ ведения путевого хозяйства.

В России[править | править вики-текст]

Путевое хозяйство в России формировалось с начала строительства и эксплуатации первых железных дорог при непосредственном участии таких учёных, как П. П. Мельников, Д. И. Журавский, Н. А. Белелюбский. Большой вклад в обоснование и развитие методов защиты пути от снега внес Н. Е. Жуковский. С начала XX века и в последующие годы на развитие путевого хозяйства оказали большое влияние работы Б. Н. Веденисова, Г. П. Передерия, Н. Т. Митюшина.

 









ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры...

Что будет с Землей, если ось ее сместится на 6666 км? Что будет с Землей? - задался я вопросом...

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.)...

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между...





Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:


©2015- 2021 zdamsam.ru Размещенные материалы защищены законодательством РФ.